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Introduction

“Whatever you would make habitual, practice it; and if you would not make a thing habitual, do
not practice it, but accustom yourself to something else.” Epictetus

How often do we feel bad about ourselves because we procrastinated, squandered our time, or did
not accomplish something meaningful during the day? Making the right decisions takes practice.
In this book, I invite you to practice the skills you have learned in BUAD 231 and the skills of focus,
dedication, and consistency. Choose a day in the week and start by dedicating some fixed time to
these problems (e.g., 15-30 minutes). The idea is to work on consistency (i.e., returning to the book
weekly for a given amount of time). Some of us will find that concentrating is challenging. Your
next task is to reduce distractions (i.e., the phone, t.v. or even your thoughts about the future).
If you keep trying and returning to the book, you will improve at Business Statistics and learn to
study with focus and consistency. All it takes is practice. Remember, you are what you practice!

The problems in this book are designed to help you master statistics and its application in R. I
recommend reviewing Grolemund (2014) if you need additional help learning R. Finally, I have
provided a list of concepts at the beginning of every chapter. Enjoy!

Why R?

We will be using R to apply the lessons we learn in BUAD 231. R is a language and environment
for statistical computing and graphics. There are several advantages to using the R software for
statistical analysis and data science. Some of the main benefits include:

• R is a powerful and flexible programming language that allows users to manipulate
and analyze data in many different ways.

• R has a large and active community of users, who have developed a wide range of packages
and tools for data analysis and visualization.

• R is free and open-source, which makes it accessible to anyone who wants to use it.

• R is widely used in academia and industry, which means that there are many resources and
tutorials available to help users learn how to use it.

• R is well-suited for working with large and complex datasets, and it can handle data from
many different sources.

• R can be easily integrated with other tools and software, such as databases, visualization
tools, and machine learning algorithms.

Overall, R is a powerful and versatile tool for data analysis and data science, and it offers many
benefits to users who want to work with data.
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Installing R

To install R, visit the R webpage at https://www.r-project.org/. Once in the website, click on the
CRAN hyperlink.

Here you can select the CRAN mirror. Scroll down until you see USA. You are free to choose any
mirror you like, I recommend using the Duke University mirror.

Once you click on the hyperlink, you will be prompted to choose the download for your operating
system. Depending on your operating system, choose either a Windows or Macintosh download.

Follow all prompts and complete installation.

Installing RStudio

Visit the Posit website at https://posit.co. Once on the website, hover to the top right of the screen.
You will see a “Download RStudio” blue button.

Next, scroll down until you reach the RStudio desktop section. Click once more on “Download
RStudio”. You can now just jump to Step 2 since you have already downloaded R. Finally, choose
the desired download depending on your operating system.

It is important to note that RStudio will not work if R is not installed. You can think of R as the
engine and RStudio as the interface.

5
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Posit Cloud

If you do not wish to install R, you can always use the cloud version. To do this, visit https:
//posit.cloud/. On the main page click on the “Sign Up” button.

Choose the “Cloud Free” option and log in using your Google credentials (if you have a Google
account) or sign up if you want to create a new account.

7
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Descriptive Statistics
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1 Descriptive Stats I

1.1 Concepts

Data and Types of Data

Data are facts and figures collected, analyzed and summarized for presentation and interpretation.
Data can be classified as:

• Cross Sectional Data refers to data collected at the same (or approximately the same)
point in time. Ex: NFL standings in 1980 or Country GDP in 2015.

• Time Series Data refers to data collected over several time periods. Ex: U.S. inflation rate
from 2000-2010 or Tesla deliveries from 2016-2022.

• Structured Data resides in a predefined row-column format (tidy).

• Unstructured Data do not conform to a pre-defined row-column format. Ex: Text, video,
and other multimedia.

Data Sets, Variables and Scales of Measurement

A data set contains all data collected for a particular study. Data sets are composed of:

• Elements are the entities on which data are collected. Ex: Football teams, countries, and
individuals.

• Observations are the set of measurements obtained for a particular element.

• Variables are a set of characteristics collected for each element.

The scales of measurements determine the amount and type of information contained in each
variable. In general, variables can be classified as categorical or numerical.

• Categorical (qualitative) data includes labels or names to identify an attribute of each
element. Categorical data can be nominal or ordinal.

– With nominal data, the order of the categories is arbitrary. Ex: Marital Status,
Race/Ethnicity, or NFL division.

– With ordinal data, the order or rank of the categories is meaningful. Ex: Rating,
Difficulty Level, or Spice Level.

• Numerical (quantitative) include numerical values that indicate how many (discrete) or how
much (continuous). The data can be either interval or ratio.
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– With interval data, the distance between values is expressed in terms of a fixed unit
of measure. The zero value is arbitrary and does not represent the absence of the
characteristic. Ratios are not meaningful. Ex: Temperature or Dates.

– With ratio data, the ratio between values is meaningful. The zero value is not arbitrary
and represents the absence of the characteristic. Ex: Prices, Profits, Wins.

Useful R Functions

Base R has some important functions that are helpful when dealing with data. Below is a list that
might come handy.

• The na.omit() function removes any observations that have a missing value (NA). The
resulting data frame has only complete cases.

• The nrow() and ncol() functions return the number of rows and columns respectively from
a data frame.

• The is.na() function returns a vector of True and False that specify if an entry is missing
(NA) or not.

• The summary() function returns a collection of descriptive statistics from a data frame (or
vector). The function also returns whether there are any missing values (NA) in a variable.

• The as.integer(), as.factor(), as.double(), are functions used to coerce your data into
a different scale of measurement.

The dplyr package has a collection of functions that are useful for data manipulation and trans-
formation. If you are interested in this package you can refer to Wickham (2017). To install, run
the following command in the console install.packages("dplyr").

• The arrange() function allows you to sort data frames in ascending order. Pair with the
desc() function to sort the data in descending order.

• The filter() function allows you to subset the rows of your data based on a condition.
• The select() function allows you to select a subset of variables from your data frame.

1.2 Exercises

The following exercises will help you test your knowledge on the Scales of Measurement. They will
also allow you to practice some basic data “wrangling” in R. In these exercises you will:

• Identify numerical and categorical data.

• Classify data according to their scale of measurement.

• Sort and filter data in R.

• Handle missing values (NA’s) in R.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.
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Exercise 1

A bookstore has compiled data set on their current inventory. A portion of the data is shown
below:

Title Price Year Published Rating
Frankenstein 5.49 1818 4.2

Dracula 7.60 1897 4.0
… … … …

Sleepy Hollow 6.95 1820 3.8

1. Which of the above variables are categorical and which are numerical?
2. What is the measurement scale of each of the above variable?

Exercise 2

A car company tracks the number of deliveries every quarter. A portion of the data is shown
below:

Year Quarter Deliveries
2016 1 14800
2016 2 14400

… … …
2022 3 343840

1. What is the measurement scale of the Year variable? What are the strengths and weaknesses
of this type of measurement scale?

2. What is the measurement scale for the Quarter variable? What is the weakness of this type
of measurement scale?

3. What is the measurement scale for the Deliveries variable? What are the strengths of this
type of measurement scale?

Exercise 3

Use the airquality data set included in R for this problem.

1. Sort the data by Temp, Ozone, and Wind all in descending order. What is the day and month
of the first observation on the sorted data?

2. Sort the data only by Temp in descending order. Of the 10 hottest days, how many of them
were in July?

3. How many missing values are there in the data set? What rows have missing values for
Solar.R?

4. Remove all observations that have a missing values. Create a new object called CompleteAG.
5. When using CompleteAG, how many days was the temperature at least 60 degrees?
6. When using CompleteAG, how many days was the temperature within [55,75] degrees and an

Ozone below 20?

11



Exercise 4

Use the Packers data set for this problem. You can find the data set at https://jagelves.github.io/Data/Packers.csv

1. Remove the any observation that has a missing value with the na.omit() function. How
many observations are left in the data set?

2. Determine the type of the Experience variable by using the typeof() function. What type is
the variable?

3. Remove observations that have an “R” and coerce the Experience variable to an integer using
the as.integer() function. What is the total sum of years of experience?

1.3 Answers

Exercise 1

1. The variables Title and Rating are categorical whereas Price and Year are numerical.

2. The measurement scale is nominal for Title, ordinal for Ratio, ratio for Price, and interval
for Year. Recall, that the nominal and ratio scales represent the least and most sophisticated
levels of measurement, respectively.

Exercise 2

1. The variable Year is measured on the interval scale because the observations can be ranked,
categorized and measured when using this kind of scale. However, there is no true zero point
so we cannot calculate meaningful ratios between years.

2. The variable Quarter is measured on the nominal scale, even though it contains numbers. It
is the least sophisticated level of measurement because if we are presented with nominal data,
all we can do is categorize or group the data.

3. The variable Deliveries is measured on the ratio scale. It is the strongest level of measurement
because it allows us to categorize and rank the data as well as find meaningful differences
between observations. Also, with a true zero point, we can interpret the ratios between
observations.

Exercise 3

1. The day and month of the first observation is August 28th.

The easiest way to sort in R is by using the dplyr package. Specifically, the arrange() function
within the package. Let’s also use the desc() function to make sure that the data is sorted in
descending order. We can use indexing to retrieve the first row of the sorted data set.

12



1 library(dplyr)
2 SortedAQ<-arrange(airquality,desc(Temp),desc(Ozone),desc(Wind))
3 SortedAQ[1,]

Ozone Solar.R Wind Temp Month Day
1 76 203 9.7 97 8 28

2. Of the 10 hottest days only two were in July.

We can use the arrange() function one more time for this question. Then we can use indexing to
retrieve the top 10 observations.

1 SortedAQ2<-arrange(airquality,desc(Temp))
2 SortedAQ2[1:10,]

Ozone Solar.R Wind Temp Month Day
1 76 203 9.7 97 8 28
2 84 237 6.3 96 8 30
3 118 225 2.3 94 8 29
4 85 188 6.3 94 8 31
5 NA 259 10.9 93 6 11
6 73 183 2.8 93 9 3
7 91 189 4.6 93 9 4
8 NA 250 9.2 92 6 12
9 97 267 6.3 92 7 8
10 97 272 5.7 92 7 9

3. There are a total of 44 missing values. Ozone has 37 and Solar.R has 7. Rows 5, 6, 11, 27,
96, 97, 98 are missing for Solar.R.

We can easily identify missing values with the summary() function.

1 summary(airquality)

Ozone Solar.R Wind Temp
Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
NA's :37 NA's :7

Month Day
Min. :5.000 Min. : 1.0
1st Qu.:6.000 1st Qu.: 8.0
Median :7.000 Median :16.0

13



Mean :6.993 Mean :15.8
3rd Qu.:8.000 3rd Qu.:23.0
Max. :9.000 Max. :31.0

To view the rows that have NA’s in them, we can use the is.na() function and indexing. Below
we see that 7 values are missing for the Solar.R variable in the months 5 and 8 combined.

1 airquality[is.na(airquality$Solar.R),]

Ozone Solar.R Wind Temp Month Day
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
11 7 NA 6.9 74 5 11
27 NA NA 8.0 57 5 27
96 78 NA 6.9 86 8 4
97 35 NA 7.4 85 8 5
98 66 NA 4.6 87 8 6

4. To create the new object of complete observations we can use the na.omit() function.

1 CompleteAQ<-na.omit(airquality)

5. There were 107 days where the temperature was at least 60.

Using base R we have:

1 nrow(CompleteAQ[CompleteAQ$Temp>=60,])

[1] 107

We can also use dplyr for this question. Specifically, using the filter() and nrow() functions we
get:

1 nrow(filter(CompleteAQ,Temp>=60))

[1] 107

6. There were 24 days where the temperature was between 55 and 75 and the ozone level was
below 20.

Using base R we have:

1 nrow(CompleteAQ[CompleteAQ$Temp>55 & CompleteAQ$Temp<75 & CompleteAQ$Ozone<20,])

14



[1] 24

Using the filter() function once more we get:

1 nrow(filter(CompleteAQ,Temp>55,Temp<75,Ozone<20))

[1] 24

Exercise 4

1. There are 84 observations in the complete cases data set.

Let’s import the data to R by using the read.csv() function.

1 Packers<-read.csv("https://jagelves.github.io/Data/Packers.csv")

We can remove any missing observation by using the na.omit() function. We can name this new
object Packers2.

1 Packers2<-na.omit(Packers)

To find the number of observations we can use the dim() function. It returns the number of
observations and variables.

1 dim(Packers2)

[1] 84 8

2. The type is character.

Use the typeof() function on the Experience variable.

1 typeof(Packers2$Experience)

[1] "character"

3. The total sum of experience is 288.

First, remove any observation with an R by using indexing and logicals.

1 Packers2<-Packers2[Packers2$Experience!="R",]

Now we can coerce the variable to an integer by using the as.integer() function.

1 Packers2$Experience<-as.integer(Packers2$Experience)

Lastly, calculate the sum using the sum() function.

15



1 sum(Packers2$Experience)

[1] 288
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2 Descriptive Stats II

2.1 Concepts

Frequency

A frequency distribution is a tabular summary of data showing the number of items in each of
several non-overlapping classes.

• The relative frequency is calculated by 𝑓𝑖/𝑛, where 𝑓𝑖 is the frequency of class 𝑖 and 𝑛 is
the total frequency.

• The cumulative frequency shows the number of data items with values less than or equal
to the upper class limit of each class.

• The cumulative relative frequency is given by 𝑐𝑓𝑖/𝑛, where 𝑐𝑓𝑖 is the cumulative frequency
of class 𝑖.

Plots

A bar plot illustrates the frequency distribution of qualitative data.

• Is an illustration for qualitative data.

• Includes the classes in the horizontal axis and frequencies or relative frequencies in the vertical
axis.

• Has gaps between each bar.

A histogram illustrates the frequency distribution of quantitative data.

• Is an illustration for quantitative data.

• There are no gaps between the bars.

• The number, width and limits of each class must be determined.

– The number of classes can be determined by the 2𝑘 rule: select 𝑘 such that 2𝑘 is greater
than the number of observations by the smallest amount.

– The width of the class is approximately range/(# of Classes). The value should be
rounded up.

– The limits should be chosen so that each point belongs to only one class.

17



Useful R Functions

The table() command generates frequency distributions or contingency tables if two variables are
used.

The prop.table() command generates relative frequency distributions from an object that contains
a table.

The cut() function generates class limits and bins used in frequency distributions (and histograms)
for quantitative data.

Base R has the barplot() function for categorical variable, histogram() function for numerical
data, and the plot() function for line charts or scatter plots. Below are some arguments that are
helpful when plotting.

• main: used to set the plot’s title. The title should be entered as a character.
• col: used to set the color of the plot. Hex and RGB values are allowed as inputs. The color

should be entered as a character.
• xlab and ylab: are used to set the labels for the 𝑥 and 𝑦 axis respectively. The labels should

be entered as characters.
• legend() is a function to customize the legend of a graph. This argument may be used with

the plot(), barplot() or histogram() functions.

– x: used to set the location of the legend in the plotting area. Ex: “bottomleft”.
– legend: a vector specifying the legend names to be included.
– col: a vector specifying the color of each item in the legend.

2.2 Exercises

The following exercises will help you practice summarizing data with tables and simple graphs. In
particular, the exercises work on:

• Developing frequency distributions for both categorical and numerical data.

• Constructing bar charts, histograms, and line charts.

• Creating contingency tables.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

Install the ISLR2 package in R. You will need the BrainCancer data set to answer this question.

1. Construct a frequency and relative frequency table of the Diagnosis variable. What was the
most common diagnosis? What percentage of the sample had this diagnosis?

2. Construct a bar chart. Summarize the findings.

18



3. Construct a contingency table that shows the Diagnosis along with the Status. Which di-
agnosis had the highest number of non-survivals (0)? What was the survival rate of this
diagnosis?

4. Construct a stacked column chart. Which two Diagnosis and Status combinations are the
most frequent?

Exercise 2

You will need the airquality data set (in base R) to answer this question.

1. Construct a frequency distribution for Temp. Use five intervals with widths of 50 < 𝑥 ≤ 60;
60 < 𝑥 ≤ 70; etc. Which interval had the highest frequency? How many times was the
temperature between 50 and 60 degrees?

2. Construct a relative frequency, cumulative frequency and the relative cumulative frequency
distributions. What proportion of the time was Temp between 50 and 60 degrees? How many
times was the Temp 70 degrees or less? What proportion of the time was Temp more than
70 degrees?

3. Construct the histogram. Is the distribution symmetric? If not, is it skewed to the left or
right?

Exercise 3

You will need the Portfolio data set from the ISLR2 package to answer this question.

1. Construct a line chart that shows the returns over time for each portfolio (X and Y) by using
two lines each with a unique color. Assume the data is for the period 1901 to 2000. Include
also a legend that matches colors to portfolios.

2.3 Answers

Exercise 1

1. The most common diagnosis is Meningioma, a slow-growing tumor that forms from the mem-
branous layers surrounding the brain and spinal cord. The diagnosis represents about 48.28%
of the sample.

Start by loading the ISLR2 package. To construct the frequency distribution table, use the table()
function.

1 library(ISLR2)
2 table(BrainCancer$diagnosis)

Meningioma LG glioma HG glioma Other
42 9 22 14
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The relative frequency distribution can be easily retrieved by saving the frequency table in an object
and then using the prop.table() function.

1 freq<-table(BrainCancer$diagnosis)
2 prop.table(freq)

Meningioma LG glioma HG glioma Other
0.4827586 0.1034483 0.2528736 0.1609195

2. The majority of diagnosis are Meningioma. Low grade glioma is the least common of diagnosis.
High grade glioma and other diagnosis have about the same frequency.

To construct the bar chart use the barplot() function in R.

1 barplot(freq, col = "#F5F5F5", ylim=c(0,50))

Meningioma LG glioma HG glioma Other
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3. 33 people did not survive Meningioma. The survival rate of Meningioma is only 21.43%.

Use the table() function one more time to create the contingency table for the two variables.

1 (freq2<-table(BrainCancer$status,BrainCancer$diagnosis))

Meningioma LG glioma HG glioma Other
0 33 5 5 9
1 9 4 17 5
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To get the survival rates, we can use the prop.table() function once again.

1 prop.table(freq2,margin = 2)

Meningioma LG glioma HG glioma Other
0 0.7857143 0.5555556 0.2272727 0.6428571
1 0.2142857 0.4444444 0.7727273 0.3571429

4. Meningioma and not surviving is the most common with 33 occurrences. High grade glioma
and surviving is the the second most common.

Use the barplot() function one more time to construct the stacked column chart.

1 barplot(table(BrainCancer$status,BrainCancer$diagnosis),
2 legend.text = c("Not Survived","Survived"), ylim=c(0,50))
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Exercise 2

1. The highest frequency is in the 80 < 𝑥 ≤ 90 bin. 8 temperatures were between 50 < 𝑥 ≤ 60
degrees.

Create a vector containing the intervals desired by using the seq() function.

1 intervals <- seq(50, 100, by=10)

Next use the cut() function to create the cuts for the histogram.
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1 intervals.cut <- cut(airquality$Temp, intervals, left=FALSE, right=TRUE)

The frequency distribution can be obtained by using the table() function on the interval.cut object
created above.

1 table(intervals.cut)

intervals.cut
(50,60] (60,70] (70,80] (80,90] (90,100]

8 25 52 54 14

2. The temperature was 5.22% of the time between 50 and 60; The temperature was 70 or less
33 times; The temperature was above 70, 78.43% of the time.

To get the relative frequency table, start by saving the proportion table into an object.Then you
can use the prop.table() function.

1 freq<-table(intervals.cut)
2 prop.table(freq)

intervals.cut
(50,60] (60,70] (70,80] (80,90] (90,100]

0.05228758 0.16339869 0.33986928 0.35294118 0.09150327

For the cumulative distribution you can use the cumsum() function on the frequency distribution.

1 cumulfreq<-cumsum(freq)
2 cumulfreq

(50,60] (60,70] (70,80] (80,90] (90,100]
8 33 85 139 153

Lastly, for the relative cumulative distribution table, you can use the cumsum() function on the
relative frequency table.

1 cumsum(prop.table(freq))

(50,60] (60,70] (70,80] (80,90] (90,100]
0.05228758 0.21568627 0.55555556 0.90849673 1.00000000

3. The distribution is not perfectly symmetric. It is skewed slightly to the left (see histogram.)

Use the hist() function to create the histogram.
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1 hist(airquality$Temp, breaks=intervals,
2 right=TRUE,col="#F5F5F5", main="Temperature in NY", xlab="")

Temperature in NY

F
re

qu
en

cy

50 60 70 80 90 100

0
10

30
50

Exercise 3

1. From 1901 through 2000, both portfolios have behaved very similarly. Returns are between
−3% and 3%, there is no trend, and positive (negative) returns for X seem to match with
positive (negative) returns of Y.

You can use the plot() function to create a plot of Portfolio Y. The line for Portfolio X can be
added with the lines() function.

1 plot(Portfolio$Y,
2 x=seq(1901,2000), type="l",
3 col="black", xlab="", ylab="% Return", ylim=c(-3,3),
4 xlim=c(1901,2000), lwd=2, axes = F)
5 axis(side=1, labels=TRUE, font=1,las=1)
6 axis(side=2, labels=TRUE, font=1,las=1)
7 lines(Portfolio$X, x=seq(1901,2000), type="l",
8 col="darkgrey", lwd=2)
9 legend(x = "bottomleft",

10 legend = c("Port Y", "Port X"),
11 lty = c(1, 1),
12 col = c("black", "darkgrey"),
13 lwd = 2,
14 bty="n")
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3 Descriptive Statistics III

3.1 Concepts

Measures of Central Location

Measures of Central Location determine where the center of a distribution lies.

• The mean is the average value for a numerical variable. The sample statistic is estimated by
̄𝑥 = ∑ 𝑥𝑖/𝑛, where 𝑥𝑖 is observation 𝑖, and 𝑛 is the number of observations. The population

parameter is defined as 𝜇 = ∑ 𝑥𝑖/𝑁 .

• The median is the value in the middle when data is organized in ascending order. When 𝑛
is even, the median is the average between the two middle values.

• The mode is the value with highest frequency from a set of observations.

• The weighted mean uses weights to determine the importance of each data point of a
variable. It is calculated by ∑ 𝑤𝑖𝑥𝑖

∑ 𝑤𝑖
, where 𝑤𝑖 are the weights associated to the values 𝑥𝑖.

• The geometric mean is a multiplicative average that is less sensitive to outliers. It is used to
average growth rates or rated of return. It is calculated by 𝑛√(1 + 𝑟1) ∗ (1 + 𝑟2)...(1 + 𝑟𝑛)−1,
where 𝑛

√ is the 𝑛𝑡ℎ root, and 𝑟𝑖 are the returns or growth rates.

Useful R functions

Base R has a collection of functions that calculate measures of central location.

• The mean() function calculates the average of a vector of values.

• The median() function returns the median of a vector of values.

• The table() function provides us with a frequency distribution. We can then identify the
mode(s) of the vector provided.

• The summary() function returns a collection of descriptive statistics for a vector or data frame.
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3.2 Exercises

The following exercises will help you practice the measures of central location. In particular, the
exercises work on:

• Calculating the mean, median, and the mode.

• Calculating the weighted average.

• Applying the geometric mean for growth rates and returns.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

For the following exercises, make your calculations by hand and verify results using R functions
when possible.

1. Use the following observations to calculate the mean, the median, and the mode.

8 10 9 12 12

2. Use following observations to calculate the mean, the median, and the mode.

-4 0 -6 1 -3 -4

3. Use the following observations, calculate the mean, the median, and the mode.

20 15 25 20 10 15 25 20 15

Exercise 2

Download the ISLR2 package. You will need the OJ data set to answer this question.

1. Find the mean price for Country Hill (PriceCH) and Minute Maid (PriceMM).

2. Find the mean price of Country Hill (PriceCH) in store 1 and store 2 (StoreID). Which store
had the better price?

3. Find the mean price paid by Country Hill (PriceCH) purchasers (Purchase) in store 1 (Stor-
eID)? How about store 2? Which store had the better price?
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Exercise 3

1. Over the past year an investor bought TSLA. She made these purchases on three occasions
at the prices shown in the table below. Calculate the average price per share.

Date Price Per Share Number of Shares
February 250.34 80

April 234.59 120
Aug 270.45 50

2. What would have been the average price per share if the investor would have bought equal
amounts of shares each month?

Exercise 4

1. Consider the following observations for the consumer price index (CPI). Calculate the inflation
rate (Growth Rate of the CPI) for each period.

1.0 1.3 1.6 1.8 2.1

2. Suppose that you want to invest $1000 dollars in a stock that is predicted to yield the following
returns in the next four years. Calculate both the arithmetic mean and the geometric mean.
Use the geometric mean to estimate how much money you would have by the end of year 4.

Year Annual Return
1 17.3
2 19.6
3 6.8
4 8.2

3.3 Answers

Exercise 1

1. To find the mean we will use the following formula ( 1
𝑛 ∑𝑛

𝑖=𝑖 𝑥𝑖). The summation of the values
is 51 and the number of observations is 5. The mean is 51/5 = 10.2.

The median is found by locating the middle value when data is sorted in ascending order.
The median in this example is 10.

The mode is the value with the highest frequency. In this example the mode is 12 since it is
repeated twice and all other numbers appear only once.

The mean can be easily verified in R by using the mean() function:
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1 mean(c(8,10,9,12,12))

[1] 10.2

Similarly, the median is easily verified by using the median() function:

1 median(c(8,10,9,12,12))

[1] 10

We can use the table() function to calculate frequencies and easily identify the mode.

1 table(c(8,10,9,12,12))

8 9 10 12
1 1 1 2

2. The mean is −2.67, the median is −3.5, the mode is −4.

These mean is verified in R:

1 mean(c(-4,0,-6,1,-3,-4))

[1] -2.666667

The median in R:

1 median(c(-4,0,-6,1,-3,-4))

[1] -3.5

Finally, the mode in R:

1 table(c(-4,0,-6,1,-3,-4))

-6 -4 -3 0 1
1 2 1 1 1

3. The mean is 18.33, the median is 20, the data is bimodal with both 15 and 20 being modes.

These mean is verified in R:
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1 mean(c(20,15,25,20,10,15,25,20,15))

[1] 18.33333

The median in R:

1 median(c(20,15,25,20,10,15,25,20,15))

[1] 20

The frequency distribution identifies the modes:

1 table(c(20,15,25,20,10,15,25,20,15))

10 15 20 25
1 3 3 2

Exercise 2

1. The mean price for Country Hill is 1.87. The mean price for Minute Maid is 2.09.

The means can be easily found with the mean() function:

1 library(ISLR2)
2 mean(OJ$PriceCH)

[1] 1.867421

1 mean(OJ$PriceMM)

[1] 2.085411

2. The mean price at store 1 for Country Hill is 1.80 vs. 1.84 for store 2. The juice is cheaper
at store 1.

The means for each store can be found by using indexing and a logical statement. The Country
Hill mean price at store 1 is given by:

1 mean(OJ$PriceCH[OJ$StoreID==1])

[1] 1.803758

The Country Hill mean price at store 2 is given by:
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1 mean(OJ$PriceCH[OJ$StoreID==2])

[1] 1.841216

3. Purchasers of Country Hill at store 1 paid and average of 1.80 for Country Hill juice. At store
2 they paid 1.86. Once again the average price was lower at store 1.

The mean for Country Hill purchasers at store 1 is given by:

1 mean(OJ$PriceCH[OJ$StoreID==1 & OJ$Purchase=="CH"])

[1] 1.797176

The mean for Country Hill purchasers at store 2 is:

1 mean(OJ$PriceCH[OJ$StoreID==2 & OJ$Purchase=="CH"])

[1] 1.857383

Exercise 3

1. The average price of sale is found by using the weighted average formula. ∑ 𝑤𝑖𝑥𝑖
∑ 𝑤𝑖

The weights
(𝑤𝑖) are given by the number of shares bought and the values (𝑥𝑖) are the prices. The weighted
average is 246.802.

In R you can create two vectors. One holds the share price and the other one the number of shares
bought.

1 PricePerShare<-c(250.34,234.59,270.45)
2 NumberOfShares<-c(80,120,50)

Next, you can multiply the PricePerShare and NumberOfShares vectors to find the numerator and
then use sum() function to find the denominator. The weighted average is:

1 (WeightedAverage<-
2 sum(PricePerShare*NumberOfShares)/sum(NumberOfShares))

[1] 246.802

2. The average if equal shares were bought would be 251.7933.

In R you can use the mean() function on the PricePerShare vector.

1 (Average<-mean(PricePerShare))

[1] 251.7933
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Exercise 4

1. The inflation rate for each period is shown in the table below:

30% 23.08% 12.5% 16.67%

In R create an object to store the values of the CPI:

1 CPI<-c(1,1.3,1.6,1.8,2.1)

Next use the diff() function to find the difference between the end value and start value. Divide
the result by a vector of starting value and multiply times 100.

1 (Inflation<-100*diff(CPI)/CPI[1:4])

[1] 30.00000 23.07692 12.50000 16.66667

2. At the end of 4 years it is predicted that you would have 1621.17 dollars. Each year you
would have gained 12.84% on average.

In R include the annual rates in a vector:

1 growth<-c(0.173,0.196,0.068,0.082)

The arithmetic mean is:

1 100*mean(growth)

[1] 12.975

The geometric mean is:

1 (geom<-((prod(1+growth))^(1/4)-1)*100)

[1] 12.8384

At the end of the four years we would have:

1 1000*(1+geom/100)^4

[1] 1621.167
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4 Descriptive Stats IV

4.1 Concepts

Measures of Dispersion

Measures of dispersion are used to determine the spread (variability) of the data.

• The range is calculated by 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 − 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡. It ignores the variability of the data between
the largest and smallest values.

• The variance calculates the dispersion around the mean. It uses squared deviations. The
population parameter is given by 𝜎2 = ∑(𝑥𝑖−𝜇)2

𝑁 , while the sample statistic is 𝑠2 = ∑(𝑥𝑖−�̄�)2

𝑛−1 .

• The standard deviation measures the average deviation around the mean. It is calculated
as the square root of the variance. For the population parameter use 𝜎 =

√
𝜎2 and 𝑠 =

√
𝑠2

for the sample statistic.

• The Mean Absolute Deviation (𝑀𝐴𝐷) measures the average deviation from the mean.
This measure uses absolute deviations. It is calculated by 𝑀𝐴𝐷 = ∑ |𝑥𝑖−𝜇|

𝑁 for the population
and 𝑚𝑎𝑑 = ∑ |𝑥𝑖−�̄�|

𝑛 for the sample.

• The coefficient of variation 𝐶𝑉 = 𝑠/ ̄𝑥 adjusts the standard deviation for differences in
units of measure or scale.

Portfolio Assesment

To asses the performance of a portfolio calculate:

• The mean return of the portfolio 𝛼�̄�1 + (1 − 𝛼)�̄�2, where 𝛼 is the weight of investment 1 in
the portfolio and �̄�𝑖 is the average return of investment 𝑖 ∈{1,2}.

• The variance of the portfolio is given by [ 𝛼
1 − 𝛼]

𝑇
[ 𝑠2

𝑥 𝑠𝑥𝑦
𝑠𝑥𝑦 𝑠2

𝑦
] [ 𝛼

1 − 𝛼]

• The Sharpe ratio quantifies the excess return of an investment over the risk free return. It is
calculated by

̄𝑅𝑝−𝑅𝑓
𝑠 , where ̄𝑅𝑝 is the mean return of the portfolio, 𝑅𝑓 is the risk free return,

and 𝑠 is the standard deviation.
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Useful R Functions

The range() function returns the maximum and minimum of a vector of values.

The diff() function finds the first difference of a vector.

The var() function calculates the sample variance for a vector of values. To calculate the population
variance, adjust the result by a factor of (𝑛 − 1)/𝑛.

The sd() function calculates the sample standard deviation.

The matrix() function defines a matrix.

When dealing with matrices, the t() function transposes a vector or matrix, and the operator %*%
performs matrix multiplication.

4.2 Exercises

The following exercises will help you practice the measures of dispersion. In particular, the exercises
work on:

• Calculating the range, MAD, variance, and the standard deviation.

• Using R to calculate measures of dispersion.

• Calculating and using the Sharpe ratio to select investments.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

For the following exercises, make your calculations by hand and verify results using R functions
when possible. Make sure to calculate the deviations from the mean.

1. Use the following observations to calculate the Range, MAD, Variance and Standard Devia-
tion. Assume that the data below is the entire population.

70 68 4 98

2. Use the following observations to calculate the Range, MAD, Variance and Standard Devia-
tion. Assume that the data below is a sample from the population.

-4 0 -6 1 -3 0
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Exercise 2

You will need the Stocks data set to answer this question. You can find this data at
https://jagelves.github.io/Data/Stocks.csv The data is a sample of daily stock prices for ticker
symbols TSLA (Tesla), VTI (S&P 500) and GBTC (Bitcoin).

1. Calculate the standard deviations for each stock. Which stock had the lowest standard
deviation?

2. Calculate the MAD. Does your answer in 1. remain the same?
3. Finally, calculate the coefficient of variation. Any changes to your conclusions?

Exercise 3

Install the ISLR2 package. You will need the Portfolio data set to answer this question. The data
has 100 records of the returns of two stocks.

1. Calculate the mean and standard deviation for each stock. Which investment has higher
returns on average? Which investment is safest as measured by the standard deviation?

2. Use a Risk Free rate of return of 3.5% to calculate the Sharpe ratio for each stock. Which
stock would you recommend?

3. Calculate the average return for a portfolio that has 30% of stock X and 70% of stock Y.
What is the standard deviation of the portfolio?

4.3 Answers

Exercise 1

1. The mean is 60, the Range is 94, the MAD is 28, the variance is 1186 and the variance is
34.44.

Start by crating a vector to hold the values:

1 Ex1<-c(70,68,4,98)

The range can be calculated by using the range() and diff() functions in R.

1 (Range<-diff(range(Ex1)))

[1] 94

Next, we can create a table by hand that captures the deviations from the mean. Let’s calculate
the mean first:

1 (Average1<-mean(Ex1))
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[1] 60

Now we can use the mean to fill out a table of deviations:

𝑥𝑖 𝑥𝑖 − ̄𝑥 (𝑥𝑖 − ̄𝑥)2 |𝑥𝑖 − ̄𝑥|
70 10 100 10
68 8 64 8
4 -56 3136 56
98 38 1444 38

The variance averages out the squared deviations (𝑥𝑖 − ̄𝑥)2, the MAD averages out the absolute
deviations |𝑥𝑖 − ̄𝑥|, and the standard deviation is the square root of the variance.

Let’s verify the variance in R:

1 SquaredDeviations1<-(Ex1-Average1)^2
2 AverageDeviations1<-mean(SquaredDeviations1)
3 var(Ex1)*3/4

[1] 1186

Note that R calculates the sample variance. Hence, we must multiply the result by 3/4 to get the
population variance. The standard deviation is just the square root of the variance:

1 sqrt(AverageDeviations1)

[1] 34.43835

Lastly, the MAD is calculated by averaging the absolute deviations |𝑥𝑖 − ̄𝑥|.

1 AbsoluteDeviations1<-abs(Ex1-Average1)
2 mean(AbsoluteDeviations1)

[1] 28

2. The mean is −2, Range is 7, the MAD is 2.33, the variance is 7.6 and the standard deviation
is 2.76.

Here is the table of deviations from the mean:

𝑥𝑖 𝑥𝑖 − ̄𝑥 (𝑥𝑖 − ̄𝑥)2 |𝑥𝑖 − ̄𝑥|
-4 -2 4 2
0 2 4 2
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𝑥𝑖 𝑥𝑖 − ̄𝑥 (𝑥𝑖 − ̄𝑥)2 |𝑥𝑖 − ̄𝑥|
-6 -4 16 4
1 3 9 3
-3 -1 1 1
0 2 4 2

We can check the results in R. Let’s start with the variance:

1 Ex2<-c(-4,0,-6,1,-3,0)
2 var(Ex2)

[1] 7.6

The standard deviation can be found with the sd() function:

1 sd(Ex2)

[1] 2.75681

The MAD is given by:

1 (MAD<-mean(abs(Ex2-mean(Ex2))))

[1] 2.333333

Lastly, the range:

1 diff(range(Ex2))

[1] 7

Exercise 2

1. For the sample taken, GBTC has the less variation. The standard deviation of GBTC is 9.43,
which is less than 16.57 for VTI or 50.38 for TSLA.

Start by loading the data set from the website. Since the file is in csv format, we will use the
read.csv() function.

1 StockPrices<-read.csv("https://jagelves.github.io/Data/Stocks.csv")

Let’s start with the standard deviation of the Tesla stock. The standard deviation is given by:
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1 sd(StockPrices$TSLA)

[1] 50.38092

Next, let’s find the standard deviation for the S&P 500 or VTI. The standard deviation is given
by:

1 sd(StockPrices$VTI)

[1] 16.5731

Finally, let’s calculate the standard deviation for GBTC or Bitcoin.

1 sd(StockPrices$GBTC)

[1] 9.434213

2. The answer is the same, since the MAD for GBTC is 8.46 which is lower than 14.27 for VTI
or 41.67 for TSLA.

To calculate the MAD for TSLA we can use the following command:

1 (MADTSLA<-mean(abs(StockPrices$TSLA-mean(StockPrices$TSLA))))

[1] 41.67163

The MAD for VTI is:

1 (MADVTI<-mean(abs(StockPrices$VTI-mean(StockPrices$VTI))))

[1] 14.27169

The MAD for GBTC is:

1 (MADGBTC<-mean(abs(StockPrices$GBTC-mean(StockPrices$GBTC))))

[1] 8.458029

3. By considering the magnitudes of the stock prices, it seems like VTI is the less volatile stock.
VTI has a CV of 0.08 which is lower than 0.44 for GBTC or 0.18 for TSLA. In fact, by CV
Bitcoin seems to be the most risky asset.

The coefficients of variations are as follows. For TSLA the CV is:
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1 (CVTSLA<-sd(StockPrices$TSLA)/mean(StockPrices$TSLA))

[1] 0.1793755

For VTI the CV is:

1 (CVVTI<-sd(StockPrices$VTI)/mean(StockPrices$VTI))

[1] 0.07970004

For GBTC we get:

1 (CVGBTC<-sd(StockPrices$GBTC)/mean(StockPrices$GBTC))

[1] 0.4442497

Exercise 3

1. The best performing stock on average is stock X. It has an average return of −0.078%
vs. 0.097% for stock Y. The safest stock is stock X as well, since the standard deviation
is 1.062 percentage points vs. 1.14 percentage points for stock Y.

Start by loading the ISLR2 package:

1 library(ISLR2)

Next, calculate the mean for stock X:

1 mean(Portfolio$X)

[1] -0.07713211

and stock Y.

1 mean(Portfolio$Y)

[1] -0.09694472

Then, calculate the standard deviation for stock X

1 sd(Portfolio$X)
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[1] 1.062376

and stock Y.

1 sd(Portfolio$Y)

[1] 1.143782

2. The Sharpe Ratio measures the excess return per unit of risk taken. Stock X has the better
Sharpe Ratio. −0.106 vs. −0.115. Stock X is recommended since it provides a higher excess
return per unit of risk taken.

To calculate Sharpe Ratios use both the average return, and the standard deviation. For stock X,
the Sharpe Ratio is:

1 (mean(Portfolio$X)-0.035)/sd(Portfolio$X)

[1] -0.1055484

The Sharpe Ratio for stock Y:

1 (mean(Portfolio$Y)-0.035)/sd(Portfolio$Y)

[1] -0.1153583

3. The portfolio has an average return of −0.091 which is worse than stock X but better than
stock Y. The standard deviation is 1.00. This is better than stock X and Y separately. The
Sharpe ratio of −0.091 is also better for the portfolio than for each stock individually.

The mean of the portfolio is given by:

1 (mean_return=0.3*mean(Portfolio$X)+0.7*mean(Portfolio$Y))

[1] -0.09100094

The covariance matrix is given by:

1 (risk<-cov(Portfolio))

X Y
X 1.1286424 0.6263583
Y 0.6263583 1.3082375

Using the matrix we can now calculate the standard deviation:
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1 (standard<-sqrt(t(c(0.3,0.7)) %*% (risk %*% c(0.3,0.7))))

[,1]
[1,] 1.002838

Finally, the Sharpe ration for the portfolio is:

1 mean_return/standard[1]

[1] -0.09074338

40



5 Descriptive Stats V

5.1 Concepts

Quantiles and Percentiles

A quantile is a location within a set of ranked numbers (or distribution), below which a certain
proportion, 𝑞, of that set lie. Ex: 0.25 of the data lies below the 0.25 quantile.

Percentiles express quantiles in percentage form. Ex: 25% of the data lies below the 25th per-
centile. To calculate a percentile:

• Sort the data in ascending order.

• Compute the location of the percentile desired using 𝐿𝑝 = (𝑛+1)𝑃
100 where 𝐿𝑝 is the location of

the 𝑃𝑡ℎ percentile, and 𝑃 is the percentile desired.

• The value at 𝐿𝑝, is the the 𝑃𝑡ℎ percentile.

Chevyshev’s Theorem and Empirical Rule

Chevyshev’s Theorem states that at least 1 − 1/𝑧2% of the data lies between 𝑧 standard devia-
tions from the mean. This result does not depend on the shape of the distribution.

The Empirical Rule or (68,95,99.7 rule) states that 68%, 95%, and 99.7% of the data lies between
1, 2, and 3 standard deviations from the mean respectively. The rule depends on the data being
normally distributed.

Five Point Summary and Outliers

A popular way to summarize data is by calculating the minimum, first quartile, median, third
quartile and maximum (five point summary).

The interquartile range (IQR) is the difference between the third quartile and the first quartile.

Outliers are extreme deviations from the mean. They are values that are not “normal”. To
calculate outliers:

• Use a z-score to measure the distance from the mean in units of standard deviation. 𝑧𝑖 = 𝑥𝑖−�̄�
𝑠𝑥

.
𝑧-scores above 3 are suspected outliers.

• Calculate 𝑄1 − 1.5(𝐼𝑄𝑅) and 𝑄3 + 1.5(𝐼𝑄𝑅), where 𝑄1 is the first quartile, 𝑄3 is the third
quartile, and 𝐼𝑄𝑅 is the interquartile range. If 𝑥𝑖 is less than 𝑄1 − 1.5(𝐼𝑄𝑅) or greater than
𝑄3 + 1.5(𝐼𝑄𝑅), then it is considered an outlier.
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A box plot is a graph that shows the five point summary, outliers (if any), and the distribution of
data.

To determine if the data is skewed, calculate the Pearson’s Coefficient of Skew. 𝑆𝑘 =
3(�̄�−𝑀𝑒𝑑𝑖𝑎𝑛)

𝑠𝑥
. The distribution is skewed to the left if 𝑆𝑘 < 0, skewed to the right is 𝑆𝑘 > 0,

and symmetric if 𝑆𝑘 = 0.

Useful R Functions

The quantile() function returns the five point summary when no arguments are specified. For a
specific quantile, specify the probs argument.

The boxplot() command returns a box plot for a vector of values.

5.2 Exercises

The following exercises will help you practice other statistical measures. In particular, the exercises
work on:

• Constructing a five point summary and a boxplot.

• Applying Chebyshev’s Theorem.

• Identifying skewness.

• Identifying outliers.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

For the following exercises, make your calculations by hand and verify results using R functions
when possible.

1. Use the following observations to calculate the minimum, the first, second and third quartiles,
and the maximum. Are there any outliers? Find the IQR to answer the question.

3 10 4 1 0 30 6

2. Confirm your finding of an outlier by calculating the 𝑧-score. Is 30 an outlier when using a
𝑧-Score?

3. Use Chebyshev’s theorem to determine what percent of the data falls between the 𝑧-score
found in 2.
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Exercise 2

You will need the Stocks data set to answer this question. You can find this data at
https://jagelves.github.io/Data/Stocks.csv The data is a sample of daily stock prices for ticker
symbols TSLA (Tesla), VTI (S&P 500) and GBTC (Bitcoin).

1. Construct a boxplot for Stock A. Is the data skewed or symmetric?
2. Create a histogram of the data. Include a vertical line for the mean and median. Explain

how the mean and median indicates a skew in the data. Calculate the skewness statistic to
confirm your result.

3. Use a line chart to plot your data. Can you explain why the data has a skew?

Exercise 3

You will need the mtcars data set to answer this question. This data set is part of R. You don’t
need to download any files to access it.

1. Construct a boxplot for the hp variable. Write a command in R that retrieves the outlier.
Which car is the outlier?

2. Create a histogram of the data. Is the data skewed? Include a vertical line for the mean and
median. Calculate the skewness statistic to confirm your result.

3. Transform the data by taking a natural logarithm. Specifically, create a new variable called
Loghp. Repeat the procedure in 2. Is the skew still there?

5.3 Answers

Exercise 1

1. The minimum is 0, the first quartile is 2, second quartile is 4, third quartile is 8, and maximum
is 30. 30 is an outlier since it is beyond 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅.

Quartiles are calculated using the percentile formula (𝑛+1)𝑃/100. The data set has seven numbers.
The first quartile’s location is 8/4 = 2, the second quartile’s location is 8/2 = 4 and the third
quartile’s location is 24/4 = 6. The values at these location, when data is organized in ascending
order, are 1, 4, and 10.

In R we can get the five number summary by using the quantile() function. Since there are
various rules that can be used to calculate percentiles, we specify type 6 to match our rules.

1 Ex1<-c(3,10,4,1,0,30,6)
2 quantile(Ex1,type = 6)

0% 25% 50% 75% 100%
0 1 4 10 30
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The interquartile range is needed to determine if there are any outliers. The 𝐼𝑄𝑅 for this data set
is 𝑄3 − 𝑄1 = 9. This reveals that 30 is and outlier, since 10 + 1.5 ∗ 9 = 23.5. Everything beyond
23.5 is an outlier.

2. If we use the 𝑧-score instead we find that 30 is not an outlier since the 𝑧-score is 𝑍30 = 2.15.
This observation is only 2.15 standard deviations away from the mean.

In R we can make a quick calculation of the 𝑧-Score to confirm our results. The 𝑧-score is given by
𝑍𝑖 = 𝑥30−𝜇

𝜎 .

1 (Z30<-(30-mean(Ex1))/sd(Ex1))

[1] 2.148711

3. Chebyshev’s theorem states that 1 − 1
𝑧2

of the data lies between 𝑧 standard deviation from
the mean.

Substituting the 𝑧-score found in 2. we get 78.34%. In R:

1 1-1/(Z30)^2

[1] 0.7834073

Exercise 2

1. The data is skewed to the right.

Start by loading the data set:

1 StockPrices<-read.csv("https://jagelves.github.io/Data/Stocks.csv")

To construct the boxplot in R, use the boxplot() command.

1 boxplot(as.numeric(StockPrices$VTI),axes=F, ylim=c(120,260),
2 cex=1.5, col="#F5F5F5",pch=21,bg="red")
3 axis(side=1, labels=c("VTI"), at=seq(1))
4 axis(side=2, labels=TRUE, at=seq(140,260,20),font=1,las=1)
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The boxplot shows that there are no outliers. The data also looks like it has a slight skew to the
right.

2. The mean is more sensitive to outliers than the median. Hence, when the data is skewed to
the right we expect that the mean is larger than the median.

Let’s construct a histogram in R to search for skewness.

1 hist(StockPrices$VTI,main="", ylim=c(0,40),
2 xlab="Prices", col="#F5F5F5")
3 abline(v=mean(StockPrices$VTI),col="black",lwd=2)
4 abline(v=median(StockPrices$VTI),col="darkgrey",lwd=2)
5 legend(x = "topright",
6 legend = c("Mean", "Median"),
7 lty = c(1, 1),
8 col = c("black", "darkgrey"),
9 lwd = 2,

10 bty="n")
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The lines are close to each other but the mean is slighlty larger than the median. Let’s confirm
with the skewness statistic 3(𝑚𝑒𝑎𝑛 − 𝑚𝑒𝑑𝑖𝑎𝑛)/𝑠𝑑.

1 (skew<-3*(mean(StockPrices$VTI-median(StockPrices$VTI))/sd(StockPrices$VTI)))

[1] 0.2856304

This indicates that there is a slight skew to the right of the data.

3. The line chart indicates that the data has a downward trend in the early periods. This creates
a few points that are large. In later periods the stock price stabilizes to lower levels.

1 plot(y=StockPrices$VTI,x=seq(1,length(StockPrices$VTI)),
2 type="l", ylab="Prices", xlab="Period", axes=F)
3 axis(side=1, labels=TRUE, at=seq(0,250,50),font=1,las=1)
4 axis(side=2, labels=TRUE, at=seq(0,300,20),font=1,las=1)
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Exercise 3

1. The outlier is the Masserati Bora. The horse power is 335.

In R we can construct a boxplot with the following command:

1 boxplot(mtcars$hp,axes=F, ylim=c(0,400),
2 cex=1.5, col="#F5F5F5",pch=21,bg="red")
3 axis(side=1, labels=c("HP"), at=seq(1))
4 axis(side=2, labels=TRUE, at=seq(0,400,50),font=1,las=1)
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From the graph it seems like the outlier is beyond a horsepower of 275. Let’s write an R command
to retrieve the car.

1 mtcars[mtcars$hp>275,]

mpg cyl disp hp drat wt qsec vs am gear carb
Maserati Bora 15 8 301 335 3.54 3.57 14.6 0 1 5 8

It’s the Masserati Bora!

2. The histogram looks skewed to the right. This is confirmed by the estimation of a Pearson
coefficient fo skewness of 1.04.

In R we can construct a histogram with vertical lines for the mean and median wit the following
code:

1 hist(mtcars$hp,main="", ylim=c(0,12), xlab="Horse Power",
2 col="#F5F5F5")
3 abline(v=mean(mtcars$hp),col="black",lwd=2)
4 abline(v=median(mtcars$hp),col="darkgrey",lwd=2)
5 legend(x = "topright",
6 legend = c("Mean", "Median"),
7 lty = c(1, 1),
8 col = c("black", "darkgrey"),
9 lwd = 2,

10 bty="n")
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The histogram looks skewed to the right. Pearson’s Coefficient of Skewness is:

1 (SkewHP<-3*(mean(mtcars$hp)-median(mtcars$hp))/sd(mtcars$hp))

[1] 1.036458

3. The skew is still there, but the distribution now look more symmetrical and the Skew coeffi-
cient has decreased to 0.44.

In R we can create an new variable that captures the log transformation. The log() function takes
the natural logarithm of a number or vector.

1 LogHP<-log(mtcars$hp)

Let’s use this new variable to create our histogram:

1 hist(LogHP,main="", ylim=c(0,12), xlab="Horse Power",
2 col="#F5F5F5")
3 abline(v=mean(LogHP),col="black",lwd=2)
4 abline(v=median(LogHP),col="darkgrey",lwd=2)
5 legend(x = "topright",
6 legend = c("Mean", "Median"),
7 lty = c(1, 1),
8 col = c("black", "darkgrey"),
9 lwd = 2,

10 bty="n")
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The mean and the variance now look closer together. The tail of the distribution (skew) now also
looks diminished. The Skewness coefficient has decreased significantly:

1 (SkewLogHP<-3*(mean(LogHP)-median(LogHP))/sd(LogHP))

[1] 0.4402212
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Part II

Regression Estimation
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6 Regression I

6.1 Concepts

Measures of Association

Measures of association determine whether there is a linear relationship between two variables.
They also determine the strength of the relationship.

• The covariance is a measure that determines the direction of the relationship between two
variables. It is calculated by 𝑠𝑥𝑦 = ∑(𝑥𝑖−�̄�)(𝑦𝑖− ̄𝑦)

∑(𝑥𝑖−�̄�)2 . If 𝑠𝑥𝑦 > 0 there is a direct relationship, if
𝑠𝑥𝑦 < 0 there is an inverse relationship, and if 𝑠𝑥𝑦 = 0 there is no relationship.

• The correlation measures the strength of the linear relationship. It is calculated by 𝑟 = 𝑠𝑥𝑦
𝑠𝑥𝑠𝑦

.
The correlation coefficient is between [−1, 1]. When the correlation coefficient is 1 (−1), there
is a perfect direct (inverse) relationship between the two variables.

• The coefficient of determination or 𝑅2, measures the percent of variation in 𝑦 explained
by variations in 𝑥. It is calculated by 𝑅2 = 𝑟2. The next chapter expands on this measure.

• A scatter plot displays pairs of [𝑥,𝑦] as points on the Cartesian plane. The plot provides a
visual aid to determine the relationship between two variables.

Useful R Functions

To calculate the covariance use the cov() function.

The correlation coefficient can be calculated using the cor() function.

The plot() function will create scatter plots.

6.2 Exercises

The following exercises will help you understand statistical measures that establish the relationship
between two variables. In particular, the exercises work on:

• Calculating covariance and correlation.

• Using R to plot scatter diagrams.

• Calculating the coefficient of determination.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.
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Exercise 1

For the following exercises, make your calculations by hand and verify results using R functions
when possible.

1. Consider the data below. Calculate the covariance and correlation coefficient by finding
deviations from the mean. Use R to verify your result. Is there a direct or inverse relationship
between the two variables? How strong is the relationship?

x 20 21 15 18 25
y 17 19 12 13 22

2. Consider the data below. Calculate the covariance and correlation coefficient by finding
deviations from the mean. Use R to verify your result. Is there a direct or inverse relationship
between the two variables? How strong is the relationship?

w 19 16 14 11 18
z 17 20 20 16 18

Exercise 2

You will need the mtcars data set to answer this question. This data set is part of R. You don’t
need to download any files to access it.

1. Calculate the correlation coefficient between hp and mpg. Explain the results. Specifically,
the direction of the relationship and the strength given the context of the problem.

2. Create a scatter diagram of the two variables. Is the scatter diagram what you expected after
you calculated the correlation coefficient?

3. Calculate the coefficient of determination. How close is it to one? What else could be
explaining the variation in the mpg? Let your dependent variable be mpg.

Exercise 3

You will need the College data set to answer this question. You can find this data set here:
https://jagelves.github.io/Data/College.csv

1. Create a scatter diagram between GRAD_DEBT_MDN (Median Debt) and MD_EARN_WNE_P10
(Median Earnings). What type of relationship do you observe between the variables?

2. Calculate the correlation coefficient and the coefficient of determination. According to the
data, are higher debts correlated with higher earnings?
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6.3 Answers

Exercise 1

1. The covariance is 14.9 and the correlation is 0.96. The results indicate that there is a strong
direct relationship between the two variables.

Let’s start by finding the deviations from the mean for the x variable in R.

1 x<-c(20,21,15,18,25)
2 (devx<-x-mean(x))

[1] 0.2 1.2 -4.8 -1.8 5.2

We will do the same with y:

1 y<-c(17,19,12,13,22)
2 (devy<-y-mean(y))

[1] 0.4 2.4 -4.6 -3.6 5.4

Note that when the deviations in x are negative (positive), they are also negative (positive) in y.
This is indicative of a direct relationship between the two variables. The covariance is given by:

1 (Ex1Cov<-sum(devx*devy)/(length(devx)-1))

[1] 14.9

We can verify this by using cov() function in R.

1 cov(x,y)

[1] 14.9

The correlation coefficient is found by dividing the covariance over the product of standard devia-
tions. In R:

1 (Ex1Cor<-Ex1Cov/(sd(x)*sd(y)))

[1] 0.9678386

We can once more verify the result in R with the built in function cor().
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1 cor(x,y)

[1] 0.9678386

2. The covariance is 0.85 and the correlation is 0.148. The results indicate that there is a very
weak direct relationship between the two variables. They might be unrelated.

Let’s start with w and finding the deviations from the mean in R.

1 w<-c(19,16,14,11,18)
2 (devw<-w-mean(w))

[1] 3.4 0.4 -1.6 -4.6 2.4

We will do the same with z:

1 z<-c(17,20,20,16,18)
2 (devz<-z-mean(z))

[1] -1.2 1.8 1.8 -2.2 -0.2

The covariance is given by:

1 (Ex2Cov<-sum(devw*devz)/(length(devz)-1))

[1] 0.85

We can verify this with the cov() function in R.

1 cov(w,z)

[1] 0.85

The correlation coefficient is found by dividing the covariance over the product of standard devia-
tions. In R:

1 (Ex2Cor<-Ex2Cov/(sd(z)*sd(w)))

[1] 0.1480558

We can once more verify the result in R with the built in function cor().
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1 cor(w,z)

[1] 0.1480558

Exercise 2

1. The correlation coefficient is −0.78. This is indicative of a moderately strong inverse relation-
ship between mpg and mp.

In R we can easily calculate the correlation coefficient with the cor() function.

1 cor(mtcars$mpg,mtcars$hp)

[1] -0.7761684

2. The scatter diagram is downward sloping. Most points are close to the trend line. It is what
was expected from a correlation coefficient of −0.78.

1 plot(y=mtcars$mpg,x=mtcars$hp, main="",
2 axes=F,pch=21, bg="blue",
3 xlab="Horse Power",
4 ylab="Miles Per Gallon", ylim=c(10,40),xlim=c(50,400))
5 axis(side=1, labels=TRUE, font=1,las=1)
6 axis(side=2, labels=TRUE, font=1,las=1)
7 abline(lm(mtcars$mpg~mtcars$hp),
8 col="darkgray",lwd=2)
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3. The coefficient of determination is 0.6. This value is not very close to one. This is expected
since miles per gallon can also vary because of the cars weight, and fuel efficiency. It makes
sense that the hp only explains 60% of the total variation.

In R we can calculate the coefficient of determination by squaring the correlation coefficient.

1 cor(mtcars$mpg,mtcars$hp)^2

[1] 0.6024373

Exercise 3

1. It seems like there is a direct relationship between both variables. The more debt you take,
the higher the salary.

Start by loading the data. We’ll use the read.csv() function:

1 College<-read.csv("https://jagelves.github.io/Data/College.csv")

The two variables of interest are GRAD_DEBT_MDN and MD_EARN_WNE_P10. The follow-
ing code creates the scatter plot:

1 plot(y=College$MD_EARN_WNE_P10, x=College$GRAD_DEBT_MDN,
2 main="", axes=F, pch=21, bg="blue",
3 xlab="Earnings",ylab="Debt")
4 axis(side=1, labels=TRUE, font=1,las=1)
5 axis(side=2, labels=TRUE, font=1,las=1)
6 abline(lm(MD_EARN_WNE_P10~GRAD_DEBT_MDN, data=College),
7 col="darkgrey",lwd=2)
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2. The correlation coefficient shows a moderate direct relationship between earnings and debt
0.43. The coefficient of determination indicates that only 19% of the variation in earnings
can be explained by debt.

In R we can start with the correlation coefficient:

1 cor(College$MD_EARN_WNE_P10,College$GRAD_DEBT_MDN)

[1] 0.4328106

The coefficient of determination is:

1 cor(College$MD_EARN_WNE_P10,College$GRAD_DEBT_MDN)^2

[1] 0.187325
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7 Regression II

7.1 Concepts

The Regression Line

The regression line is fitted so that the average distance between the line and the sample points is
as small as possible. The line is defined by a slope (𝛽) and an intercept (𝛼). Mathematically, the
regression line is expressed as ̂𝑦𝑖 = ̂𝛼 + ̂𝛽𝑥𝑖, where ̂𝑦𝑖 are the predicted values of 𝑦 given the 𝑥’s.

• The slope determines the steepness of the line. The estimate quantifies how much a unit
increase in 𝑥 changes 𝑦. The estimate is given by ̂𝛽 = 𝑠𝑥𝑦

𝑠2𝑥
.

• The intercept determines where the line crosses the 𝑦 axis. It returns the value of 𝑦 when 𝑥
is zero. The estimate is given by ̂𝛼 = ̄𝑦 − ̂𝛽 ̄𝑥.

Goodness of Fit

There are a couple of popular measures that determine the goodness of fit of the regression line.

• The coefficient of determination or 𝑅2 is the percent of the variation in 𝑦 that is explained
by changes in 𝑥. The higher the 𝑅2 the better the explanatory power of the model. The 𝑅2

is always between [0,1]. To calculate use 𝑅2 = 𝑆𝑆𝑅/𝑆𝑆𝑇 .

– 𝑆𝑆𝑅 (Sum of Squares due to Regression) is the part of the variation in 𝑦 explained by
the model. Mathematically, 𝑆𝑆𝑅 = ∑ ( ̂𝑦𝑖 − ̄𝑦)2.

– 𝑆𝑆𝐸 (Sum of Squares due to Error) is the part of the variation in 𝑦 that is unexplained
by the model. Mathematically, 𝑆𝑆𝐸 = ∑ (𝑦𝑖 − ̂𝑦𝑖)2.

– SST (Sum of Squares Total) is the total variation of 𝑦 with respect to the mean. Math-
ematically, 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − ̄𝑦)2.

– Note that 𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸.

• The adjusted 𝑅2 recognizes that the 𝑅2 is a non-decreasing function of the number of
explanatory variables in the model. This metric penalizes a model with more explanatory
variables relative to a simpler model. It is calculated by 1 − (1 − 𝑅2) 𝑛−1

𝑛−𝑘−1 , where 𝑘 is the
number of explanatory variables used in the model and 𝑛 is the sample size.

• The Residual Standard Error estimates the average dispersion of the data points around
the regression line. It is calculated by 𝑠𝑒 = √ 𝑆𝑆𝐸

𝑛−𝑘−1 .
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Useful R Functions

The lm() function to estimates the linear regression model.

The predict() function uses the linear model object to predict values. New data is entered as a
data frame.

The coef() function returns the model’s coefficients.

The summary() function returns the model’s coefficients, and goodness of fit measures.

7.2 Exercises

The following exercises will help you get practice on Regression Line estimation and interpretation.
In particular, the exercises work on:

• Estimating the slope and intercept.

• Calculating measures of goodness of fit.

• Prediction using the regression line.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

For the following exercises, make your calculations by hand and verify results using R functions
when possible.

1. Consider the data below. Calculate the deviations from the mean for each variable and use
the results to estimate the regression line. Use R to verify your result. On average by how
much does y increase per unit increase of x?

x 20 21 15 18 25
y 17 19 12 13 22

2. Calculate SST, SSR, and SSE. Confirm your results in R. What is the 𝑅2? What is the
Standard Error estimate? Is the regression line a good fit for the data?

3. Assume that x is observed to be 32, what is your prediction of y? How confident are you in
this prediction?
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Exercise 2

You will need the Education data set to answer this question. You can find the data set at
https://jagelves.github.io/Data/Education.csv . The data shows the years of education (Educa-
tion), and annual salary in thousands (Salary) for a sample of 100 people.

1. Estimate the regression line using R. By how much does an extra year of education increase
the annual salary on average? What is the salary of someone without any education?

2. Confirm that the regression line is a good fit for the data. What is the estimated salary of a
person with 16 years of education?

Exercise 3

You will need the FoodSpend data set to answer this question. You can find this data set at
https://jagelves.github.io/Data/FoodSpend.csv .

1. Omit any NA’s that the data has. Create a dummy variable that is equal to 1 if an individual
owns a home and 0 if the individual doesn’t. Find the mean of your dummy variable. What
proportion of the sample owns a home?

2. Run a regression with Food being the dependent variable and your dummy variable as the
independent variable. What is the interpretation of the intercept and slope?

3. Now run a regression with Food being the independent variable and your dummy variable as
the dependent variable. What is the interpretation of the intercept and slope? Hint: you
might want to plot the scatter diagram and the regression line.

Exercise 4

You will need the Population data set to answer this question. You can find this data set at
https://jagelves.github.io/Data/Population.csv .

1. Run a regression of Population on Year. How well does the regression line fit the data?

2. Create a prediction for Japan’s population in 2030. What is your prediction?

3. Create a scatter diagram and include the regression line. How confident are you of your
prediction after looking at the diagram?

7.3 Answers

Exercise 1

1. The regression lines is ̂𝑦 = −4.93 + 1.09𝑥. For each unit increase in x, y increases on average
1.09.

Start by generating the deviations from the mean for each variable. For x the deviations are:
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1 x<-c(20,21,15,18,25)
2 (devx<-x-mean(x))

[1] 0.2 1.2 -4.8 -1.8 5.2

Next, find the deviations for y:

1 y<-c(17,19,12,13,22)
2 (devy<-y-mean(y))

[1] 0.4 2.4 -4.6 -3.6 5.4

For the slope we need to find the deviation squared of the x’s. This can easily be done in R:

1 (devx2<-devx^2)

[1] 0.04 1.44 23.04 3.24 27.04

The slope is calculated by ∑𝑛
𝑖=𝑖(𝑥𝑖−�̄�)(𝑦𝑖− ̄𝑦)
∑𝑛

𝑖=𝑖(𝑥𝑖−�̄�)2 . In R we can just find the ratio between the summations
of (devx)(devy) and devx2.

1 (slope<-sum(devx*devy)/sum(devx2))

[1] 1.087591

The intercept is given by ̄𝑦 − 𝛽( ̄𝑥). In R we find that the intercept is equal to:

1 (intercept<-mean(y)-slope*mean(x))

[1] -4.934307

Our results can be easily verified by using the lm() and coef() functions in R.

1 fitEx1<-lm(y~x)
2 coef(fitEx1)

(Intercept) x
-4.934307 1.087591

2. SST is 69.2, SSR is 64.82 and SSE is 4.38 (note that 𝑆𝑆𝑅 + 𝑆𝑆𝐸 = 𝑆𝑆𝑇 ). The 𝑅2 is just
𝑆𝑆𝑅
𝑆𝑆𝑇 = 0.94 and the Standard Error estimate is 1.21. They both indicate a great fit of the
regression line to the data.

Let’s start by calculating the SST. This is just ∑ (𝑦𝑖 − ̄𝑦)2.
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1 (SST<-sum((y-mean(y))^2))

[1] 69.2

Next, we can calculate SSR. This is calculated by the following formula ∑ ( ̂𝑦𝑖 − ̄𝑦)2. To obtain the
predicted values in R, we can use the output of the lm() function. Recall our fitEx1 object created
in Exercise 1. It has fitted.values included:

1 (SSR<-sum((fitEx1$fitted.values-mean(y))^2))

[1] 64.82044

The ratio of SSR to SST is the 𝑅2:

1 (R2<-SSR/SST)

[1] 0.9367115

Finally, let’s calculate SSE ∑ (𝑦𝑖 − ̂𝑦𝑖)2:

1 (SSE<-sum((y-fitEx1$fitted.values)^2))

[1] 4.379562

With the SSE we can calculate the Standard Error estimate:

1 sqrt(SSE/3)

[1] 1.208244

We can confirm these results using the summary() function.

1 summary(fitEx1)

Call:
lm(formula = y ~ x)

Residuals:
1 2 3 4 5

0.1825 1.0949 0.6204 -1.6423 -0.2555
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.9343 3.2766 -1.506 0.22916
x 1.0876 0.1632 6.663 0.00689 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.208 on 3 degrees of freedom
Multiple R-squared: 0.9367, Adjusted R-squared: 0.9156
F-statistic: 44.4 on 1 and 3 DF, p-value: 0.00689

3. If 𝑥 = 32 then ̂𝑦 = 29.87. The regression is a good fit, so we can feel good about our prediction.
However, we would be concerned about the sample size of the data.

In R we can obtain a prediction by using the predict() function. This function requires a data
frame as an input for new data.

1 predict(fitEx1, newdata = data.frame(x=c(32)))

1
29.86861

Exercise 2

1. An extra year of education increases the annual salary about 5, 300 dollars (slope). A person
that has no education would be expected to earn 17, 2582 dollars (intercept).

Start by loading the data in R:

1 Education<-read.csv("https://jagelves.github.io/Data/Education.csv")

Next, let’s use the lm() function to estimate the regression line and obtain the coefficients:

1 fitEducation<-lm(Salary~Education, data = Education)
2 coefficients(fitEducation)

(Intercept) Education
17.258190 5.301149

2. The 𝑅2 is 0.668 and the standard error is 21. The line is a moderately good fit. If someone
has 16 years of experience, the regression line would predict a salary of 102, 000 dollars.

Let’s get the 𝑅2 and the Standard Error estimate by using the summary() function and fitEx1
object.
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1 summary(fitEducation)

Call:
lm(formula = Salary ~ Education, data = Education)

Residuals:
Min 1Q Median 3Q Max

-62.177 -9.548 1.988 15.330 45.444

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.2582 4.0768 4.233 5.2e-05 ***
Education 5.3011 0.3751 14.134 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.98 on 98 degrees of freedom
Multiple R-squared: 0.6709, Adjusted R-squared: 0.6675
F-statistic: 199.8 on 1 and 98 DF, p-value: < 2.2e-16

Lastly, let’s use the regression line to predict the salary for someone who has 16 years of education.

1 predict(fitEducation, newdata = data.frame(Education=c(16)))

1
102.0766

Exercise 3

1. Approximately, 46% of the sample owns a home.

Start by loading the data into R and removing all NA’s:

1 Spend<-read.csv("https://jagelves.github.io/Data/FoodSpend.csv")
2 Spend<-na.omit(Spend)

To create a dummy variable for OwnHome we can use the ifelse() function:

1 Spend$dummyOH<-ifelse(Spend$OwnHome=="Yes",1,0)

The average of the dummy variable is given by:

1 mean(Spend$dummyOH)
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[1] 0.3625

2. The intercept is the average food expenditure of individuals without homes (6417). The slope,
is the difference in food expenditures between individuals that do have homes minus those
who don’t. We then conclude that individuals that do have a home spend about −2516 less
on food than those who don’t have homes.

To run the regression use the lm() function:

1 lm(Food~dummyOH,data=Spend)

Call:
lm(formula = Food ~ dummyOH, data = Spend)

Coefficients:
(Intercept) dummyOH

6473 -3418

3. The scatter plot shows that most of the points for home owners are below 6000. For non-home
owners they are mainly above 6000. The line can be used to predict the likelihood of owning
a home given someones food expenditure. The intercept is above one, but still it gives us
the indication that it is likely that low food expenditures are highly predictive of owning a
home. The slope tells us how that likelihood changes as the food expenditures increase by 1.
In general, the likelihood of owning a home decreases as the food expenditure increases.

Run the lm() function once again:

1 fitFood<-lm(dummyOH~Food,data=Spend)
2 coefficients(fitFood)

(Intercept) Food
1.4320766616 -0.0002043632

For the scatter plot use the following code:

1 plot(y=Spend$dummyOH,x=Spend$Food,
2 main="", axes=F, pch=21, bg="blue",
3 xlab="Food",ylab="Dummy")
4 axis(side=1, labels=TRUE, font=1,las=1)
5 axis(side=2, labels=TRUE, font=1,las=1)
6 abline(fitFood,
7 col="gray",lwd=2)
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Exercise 4

1. If we follow the 𝑅2 = 0.81 the model fits the data very well.

Let’s load the data from the web:

1 Population<-read.csv("https://jagelves.github.io/Data/Population.csv")

Now let’s filter the data so that we can focus on the population for Japan.

1 library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

1 Japan<-filter(Population,Country.Name=="Japan")
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Next, we can run the regression of Population against the Year. Let’s also run the summary()
function to obtain the fit and the coefficients.

1 fit<-lm(Population~Year,data=Japan)
2 summary(fit)

Call:
lm(formula = Population ~ Year, data = Japan)

Residuals:
Min 1Q Median 3Q Max

-9583497 -4625571 1214644 4376784 5706004

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -988297581 68811582 -14.36 <2e-16 ***
Year 555944 34569 16.08 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4871000 on 60 degrees of freedom
Multiple R-squared: 0.8117, Adjusted R-squared: 0.8086
F-statistic: 258.6 on 1 and 60 DF, p-value: < 2.2e-16

2. The prediction for 2030 is about 140 million people.

Let’s use the predict() function:

1 predict(fit,newdata=data.frame(Year=c(2030)))

1
140268585

3. After looking at the scatter plot, it seems unlikely that the population in Japan will hit 140
million. Population has been decreasing in Japan!

Use the plot() and abline() functions to create the figure.

1 plot(y=Japan$Population,x=Japan$Year, main="",
2 axes=F,pch=21, bg="#A7C7E7",
3 xlab="Year",
4 ylab="Population")
5 axis(side=1, labels=TRUE, font=1,las=1)
6 axis(side=2, labels=TRUE, font=1,las=1)
7 abline(fit,
8 col="darkgray",lwd=2)
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Part III

Probability
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8 Probability I

8.1 Concepts

Experiments and Sets

An experiment is a process that leads to one of several outcomes. Ex: Tossing a Die, Tossing a
Coin, Drawing a Card, etc.

The sample space (𝑆) of an experiment contains all possible outcomes of the experiment. Ex:
𝑆={1,2,3,4,5,6} is the sample space for tossing a die.

An event is a subset of the sample space. 𝐴={4} is the event of tossing a 4 when rolling a die.

Basic Probability Concepts

A probability is a numerical value that measures the likelihood that an event occurs.

To calculate probabilities, find the ratio between favorable outcomes and total outcomes. 𝑝 =
𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒/𝑡𝑜𝑡𝑎𝑙.

• The probability of any event 𝐴 is a value between 0 and 1 inclusive. Formally, 0 ≤ 𝑃(𝐴) ≤ 1.

• When the probability of the event is 0 then the event is impossible. When the probability is
1 then the event is certain.

• The sum of the probabilities of a list of mutually exclusive and exhaustive events equals
1. Formally, ∑ 𝑃(𝑥𝑖) = 1.

– Mutually exclusive events do not share any common outcomes. The occurrence of
one event precludes the occurrence of others.

– Exhaustive events include all outcomes in the sample space.

To assign probabilities you can use the Empirical, Classical, or Subjective Methods.

• Empirical: calculated as a relative frequency of occurrence.

• Classical: based on logical analysis.

• Subjective: calculated by drawing on personal and subjective judgement.
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Probability Rules

The Complement Rule: 𝑃(𝐴𝑐) = 1 − 𝑃(𝐴), where 𝐴𝑐 is the complement of 𝐴.

The Addition Rule: 𝑃 (𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵), where ∩ is intersection and ∪ is
union.

The Multiplication Rule:

• if events are dependent 𝑃(𝐴∩𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵), where 𝑃(𝐴|𝐵) is the conditional probability.

• if events are independent 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).

The Law of Total Probability: 𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵) + 𝑃(𝐴|𝐵𝑐)𝑃 (𝐵𝑐).
Bayes’ Theorem: 𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)/𝑃(𝐵).

Counting Rules

The Combination function counts the number of ways to choose 𝑥 objects from a total of 𝑛 objects.
The order in which the 𝑥 objects are listed does not matter.

• If repetition is not allowed use 𝐶𝑥
𝑛 = 𝑛!

(𝑛−𝑥)!𝑥! .

• If repetition is allowed use (𝑥+𝑛−1)!
(𝑛−𝑥)!𝑥! .

The Permutation function also counts the number of ways to choose 𝑥 objects from a total of 𝑛
objects. However, the order in which the 𝑥 objects are listed does matter.

• If repetition is not allowed use 𝑃 𝑥
𝑛 = 𝑛!

(𝑛−𝑥)! .

• If repetition is allowed use 𝑛𝑥.

Useful R Functions

The table() function can be used to construct frequency distributions.

The factorial() function returns the factorial of a number.

The gtools package contains the combinations() and permutations() functions used to calcu-
late combinations and permutations. Use the repeats.allowed argument to specify counting with
repetition or no repetition.
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8.2 Exercises

The following exercises will help you practice some probability concepts and formulas. In particular,
the exercises work on:

• Calculating simple probabilities.

• Applying probability rules.

• Using counting rules.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

For the following exercises, make your calculations by hand and verify results with a calculator or
R.

1. A sample space 𝑆 yields five equally likely events, 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸. Find 𝑃(𝐷), 𝑃(𝐵𝑐),
and 𝑃(𝐴 ∪ 𝐶 ∪ 𝐸).

2. Consider the roll of a die. Define 𝐴 as {1,2,3}, 𝐵 as {1,2,3,5,6}, 𝐶 as {4,6}, and 𝐷 as {4,5,6}.
Are the events 𝐴 and 𝐵 mutually exclusive, exhaustive, both or none? What about events 𝐴
and 𝐷?

3. A recent study suggests that 33.1% of the adult U.S. population is overweight and 35.7%
obese. What is the probability that a randomly selected adult in the U.S. is either obese or
overweight? What is the probability that their weight is normal? Are the events mutually
exclusive and exhaustive?

Exercise 2

For the following exercises, make your calculations by hand and verify results with a calculator or
R.

1. Let 𝑃(𝐴) = 0.65, 𝑃(𝐵) = 0.3, and 𝑃(𝐴|𝐵) = 0.45. Calculate 𝑃(𝐴 ∩ 𝐵), 𝑃(𝐴 ∪ 𝐵), and
𝑃(𝐵|𝐴).

2. Let 𝑃(𝐴) = 0.4, 𝑃 (𝐵) = 0.5, and 𝑃(𝐴𝑐 ∩𝐵𝑐) = 0.24. Calculate 𝑃(𝐴𝑐|𝐵𝑐) = 0.24, 𝑃(𝐴𝑐 ∪𝐵𝑐),
and 𝑃(𝐴 ∪ 𝐵).

3. Stock 𝐴 will rise in price with a probability of 0.4, stock 𝐵 will rise with a probability of
0.6. If stock 𝐵 rises in price, then 𝐴 will also rise with a probability of 0.5. What is the
probability that at least one of the stocks will rise in price? Prove that events 𝐴 and 𝐵 are
(are not) mutually exclusive (independent).
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Exercise 3

1. Create a joint probability table from the contingency table below. Find 𝑃(𝐴), 𝑃(𝐴 ∩ 𝐵),
𝑃(𝐴|𝐵), and 𝑃(𝐵|𝐴𝑐). Determine whether the events are independent or mutually exclusive.

𝐴𝑐 𝐵𝑐

𝐴 26 34
𝐵 14 26

Exercise 4

You will need the Crash data set and R to answer this question. The data shows information on
several car crashes. Specifically, if the crash was Head-On or Not Head-On and whether there was
Daylight or No Daylight.

1. Create a contingency table.

2. Find the probability that a) a car crash is Head-On, b) a car crash is in daylight c) a car
crash is Head-On given that there is daylight.

3. Show that Crashes and Light are dependent.

Exercise 5

1. Use Bayes’ Theorem in the following question. Let 𝑃(𝐴) = 0.7, 𝑃(𝐵|𝐴) = 0.55, and
𝑃(𝐵|𝐴𝑐) = 0.10. Find 𝑃(𝐴𝑐), 𝑃(𝐴 ∩ 𝐵), 𝑃(𝐴𝑐 ∩ 𝐵), 𝑃(𝐵), and 𝑃(𝐴|𝐵).

2. Some find tutors helpful when taking a course. Julia has a 40% chance to fail a course if she
does not have a tutor. With a tutor, the probability of failing is only 10%. There is a 50%
chance that Julia finds an available tutor. What is the probability that Julia will fail the
course? If she ends up failing the course, what is the probability that she had a tutor?

Exercise 6

1. Calculate the following values and verify your results using R. a) 3!, b) 4!, c) 𝐶8
6 , d) 𝑃 8

6 .

2. There are 10 players in a local basketball team. If we chose 5 players to randomly start a
game, in how many ways can we select the five players if order doesn’t matter? What if order
matters?
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8.3 Answers

Exercise 1

1. 𝑃(𝐷) = 1/5 = 0.2 since all events are equally likely. 𝑃(𝐵𝑐) = 4/5 = 0.8, and 𝑃(𝐴 ∪ 𝐶 ∪ 𝐸) =
𝑃(𝐴 + 𝐶 + 𝐸) = 3/5 = 0.6.

2. Events 𝐴 and 𝐵 are not mutually exclusive since they share some of the same elements. They
are not exhaustive since the union of both doesn’t create the sample space.

3. The probability is 68.8%. The events are mutually exclusive. If someone is classified as obese,
the person is not classified again as overweight. The events are not exhaustive since there
are people in the U.S. that have a normal weight. The probability that the person drawn has
normal weight is 31.2%.

Exercise 2

1. From the multiplication rule, 𝑃(𝐴|𝐵) ∗ 𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵).
Substituting values yields, 𝑃(𝐴 ∩ 𝐵) = 0.45 ∗ 0.3 = 0.135.
From the addition rule, 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).
Substituting yields, 𝑃(𝐴 ∪ 𝐵) = 0.65 + 0.3 − 0.135 = 0.815.
From the multiplication rule once again, 𝑃(𝐵|𝐴) = 𝑃(𝐴∩𝐵)

𝑃(𝐴) . Substituting yields, 𝑃(𝐵|𝐴) =
0.135/0.65 = 0.2076923.

2. From the complement rule we have that 𝑃(𝐴𝑐) = 0.6 and 𝑃(𝐵𝑐) = 0.5.
Using the multiplication rule, 𝑃(𝐴𝑐|𝐵𝑐) = 𝑃(𝐴𝑐∩𝐵𝑐)

𝑃(𝐵𝑐) . Substituting yields 𝑃(𝐴𝑐|𝐵𝑐) =
0.24/0.5 = 0.48.
From the addition rule 𝑃(𝐴𝑐 ∪ 𝐵𝑐) = 𝑃(𝐴𝑐) + 𝑃(𝐵𝑐) − 𝑃(𝐴𝑐 ∩ 𝐵𝑐).
Substituting yields 𝑃(𝐴𝑐 ∪ 𝐵𝑐) = 0.6 + 0.5 − 0.24 = 0.86.
The event that has no elements of 𝐴 or 𝐵 is given by 𝑃(𝐴𝑐 ∩ 𝐵𝑐). Therefore
𝑃(𝐴 ∪ 𝐵) = 1 − 0.24 = 0.76 has all the elements of A and B.

3. In short the problem states 𝑃(𝐴) = 0.4, 𝑃(𝐵) = 0.6, and 𝑃(𝐴|𝐵) = 0.5. Where 𝐴 and 𝐵 are
events of stocks rising in price. The question asks for 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).
Using the multiplication rule 𝑃(𝐴 ∩ 𝐵) = 0.5 ∗ 0.6 = 0.3.
Hence, 𝑃(𝐴 ∪ 𝐵) = 0.4 + 0.6 − 0.3 = 0.7.
The events are not mutually exclusive since 𝑃(𝐴 ∩ 𝐵) = 0.3 ≠ 0.
The events are also not independent since 𝑃(𝐴|𝐵) = 0.5 ≠ 0.4 = 𝑃(𝐴).

Exercise 3

1. Below is the joint probability table. The 𝑃(𝐴) = 0.26+0.34 = 0.6, 𝑃(𝐴∩𝐵) = 0.26, 𝑃(𝐴|𝐵) =
0.26/0.4 = 0.65, and 𝑃(𝐵|𝐴𝑐) = 0.14/0.4 = 0.35. Events 𝐴 and 𝐵 are not independent since
𝑃(𝐴) ≠ 𝑃 (𝐴|𝐵). The events are not mutually exclusive since 𝑃(𝐴 ∩ 𝐵) = 0.26 ≠ 0.
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𝐵 𝐵𝑐 Total
𝐴 0.26 0.34 0.6
𝐴𝑐 0.14 0.26 0.4
Total 0.4 0.6 1

Exercise 4

1. The probability of a Head-On crash is (166 + 108)/4858 = 0.056. The probability of a
daylight crash is (166 + 3258)/4858 = 0.70. The probability that the car crash is Head-On
given daylight is 166/(166 + 3258) = 0.048.

Start by loading the data into R.

1 Crash<-read.csv("https://jagelves.github.io/Data/Crash.csv")

To create a contingency table use the table() command in R.

1 table(Crash$`Crash Type`,Crash$`Light Condition`)

< table of extent 0 x 0 >

This table is used to calculate probabilities.

2. The two variables are dependent since 𝑃(𝐻𝑒𝑎𝑑 − 𝑂𝑛|𝐷𝑎𝑦𝑙𝑖𝑔ℎ𝑡) ≠ 𝑃(𝐻𝑒𝑎𝑑 − 𝑂𝑛), that is
0.048 ≠ 0.56.

Exercise 5

1. 𝑃(𝐴𝑐) = 1 − 𝑃 (𝐴) = 1 − 0.7 = 0.3, 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) = 0.55(0.70) = 0.385,
𝑃(𝐴𝑐 ∩ 𝐵) = 𝑃(𝐵|𝐴𝑐)𝑃 (𝐴𝑐) = 0.10(0.30) = 0.03, 𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴𝑐 ∩ 𝐵) = 0.385 +
0.03 = 0.415, and 𝑃(𝐴|𝐵) = 𝑃(𝐴∩𝐵)

𝑃(𝐵) = 0.385/0.415 = 0.9277.

2. Let the event of failing be 𝐹 , the event of not failing be 𝑁𝐹 , the event of having a tutor be
𝑇 , and the event of not having a tutor be 𝑁𝑇 . The probability of failing the course is 0.25.
(𝐹) = 𝑃 (𝐹 ∩ 𝑇 ) + 𝑃 (𝐹 ∩ 𝑇 𝑐) = 𝑃(𝐹 |𝑇 )𝑃(𝑇 ) + 𝑃(𝐹 |𝑇 𝑐)𝑃 (𝑇 𝑐) = 0.10(0.50) + 0.40(0.50) =
0.05 + 0.20 = 0.25 The probability of not having a tutor, given that she failed the course is
0.2. 𝑃(𝑇 |𝐹) = 𝑃(𝐹∩𝑇 )

𝑃(𝐹∩𝑇 )+𝑃(𝐹∩𝑇 𝑐) = 0.05/0.25 = 0.20

Exercise 6

1. 3! = 3 × 2 × 1 = 6, 4! = 6 × 4 = 24, 𝐶8
6 = 28, and 𝑃 8

6 = 20, 160

In R we can just use the factorial command. So 3! is:
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1 factorial(3)

[1] 6

and 4! is:

1 factorial(4)

[1] 24

For combinations and permutations we can use the gtools package:

1 library(gtools)
2 C<-combinations(8,6)
3 nrow(C)

[1] 28

1 library(gtools)
2 P<-permutations(8,6)
3 nrow(P)

[1] 20160

2. If order doesn’t matter, there are 252 ways. If order matters, then there are 30, 240 ways.

In R we can once more use the combination and permutation functions:

1 B1<-combinations(10,5)
2 nrow(B1)

[1] 252

1 B2<-permutations(10,5)
2 nrow(B2)

[1] 30240
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9 Probability II

9.1 Concepts

Random Variables

A random variable associates a numerical value with each possible experimental outcome. Specif-
ically, the random variable takes on a value with some probability.

A random variable is fully characterized by its probability density function (PDF) if continuous
or the probability mass function (PMF) if discrete.

Expected Value and Variance

When summarizing a random variable, we are mostly interested in the variable’s central tendency
(Expected Value) and dispersion (Variance).

The expected value (mean) is a measure of central location. For a discrete random variable
it is given by 𝐸(𝑥) = 𝜇 = ∑ 𝑥𝑓(𝑥), where 𝑓(𝑥) is the probability mass function. For a contin-
uous random variable it is given by 𝐸(𝑥) = ∫∞

−∞ 𝑥𝑓(𝑥)𝑑𝑥, where 𝑓(𝑥) is the probability density
function.

The variance summarizes the deviation of the values of the random variable from the mean. It is
calculated by 𝑣𝑎𝑟(𝑥) = 𝐸[(𝑥 − 𝐸(𝑥))2] = 𝐸[𝑥2] − 𝐸[𝑥]2. Note that this formula can be used for
both discrete and continuous random variables.

Discrete Uniform Distribution

The discrete uniform distribution is a probability distribution that assigns equal probability
to each outcome in a finite set of possible outcomes. In other words, each outcome in the set is
equally likely to occur.

The probability mass function is given by 𝑓(𝑥) = 1/𝑛, where 𝑛 is the number of elements in
the sample space (all possible outcomes).

The expected value is given by 𝐸(𝑥) = ∑ 𝑥𝑖
𝑛 , where 𝑥𝑖 are the possible values, and 𝑛 is the number

of possible values.

The variance is given by 𝑣𝑎𝑟(𝑥) = ∑(𝑥𝑖−𝐸(𝑥))2

𝑛−1 .
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Binomial Distribution

The binomial distribution is a probability distribution that describes the outcome of a sequence of
𝑛 independent Bernoulli trials. In a Bernoulli trial, there are only two possible outcomes: “success”
and “failure”. The probability of success is denoted by 𝑝, and the probability of failure is denoted
by 𝑞 = 1 − 𝑝. In a sequence of 𝑛 independent Bernoulli trials, the number of successes (𝑥) is a
random variable that follows a binomial distribution.

The probability mass function is given by 𝑓(𝑥) = 𝐶𝑛
𝑥 (𝑝𝑥)(1 − 𝑝)𝑛−𝑥, where 𝑛 is the number of

trials, 𝑥 is the number of successes, 𝑝 is the probability of success, and 𝐶𝑛
𝑥 is the number of ways

there can be 𝑥 successes in 𝑛 trials.

The expected value of the binomial distribution is 𝐸(𝑥) = 𝑛𝑝.

The variance of the binomial distribution is 𝑣𝑎𝑟(𝑥) = 𝑛𝑝(1 − 𝑝).

The Hypergeometric Distribution

The hypergeometric distribution is a probability distribution that describes the outcome of
drawing a sample from a population without replacement. It is used to calculate the probability
of drawing a certain number of successes (𝑥) in a sample of a given size (𝑛), where the success or
failure of each individual draw is not dependent on the success or failure of other draws.

The hypergeometric experiment differs from the binomial since:

• trials are not independent.

• the probability of success changes from trial to trial.

The probability mass function is given by 𝑓(𝑥) = 𝐶𝑟
𝑥𝐶𝑁−𝑟

𝑛−𝑥
𝐶𝑁𝑛

, where 𝑛 is the number of trials, 𝑥 is
the number of successes, 𝑟 is the number of elements in the population labeled as success, and 𝑁
is the number of elements in the population.

The expected value of the hypergeometric distribution is 𝐸(𝑥) = 𝑛 𝑟
𝑁 .

The variance of the hypergeometric distribution is 𝑣𝑎𝑟(𝑥) = 𝑛 𝑟
𝑁 (1 − 𝑟

𝑁 )(𝑁−𝑛
𝑁−1 ).

Poisson Distribution

The Poisson distribution estimates the number of successes (𝑥) over a specified interval of time
or space.

The probability mass function is given by 𝑓(𝑥) = 𝜇𝑒−𝑥

𝑥! , where 𝜇 is the expected number of
successes in any given interval and also the variance, and 𝑒 is Euler’s number (2.71828…).

An experiment satisfies a Poisson process if:

• The number of successes with a specified time or space interval equals any integer between
zero and infinity.

• The number of successes counted in non-overlapping intervals are independent.
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• The probability of success in any interval is the same for all intervals of equal size and is
proportional to the size of the interval.

Useful R Functions

To calculate probabilities based on discrete random variables use the pbinom(), phyper(), and
ppois() functions. For the uniform distribution use the extraDistr package and the pdunif()
function.

To calculate cumulative probabilities use the dbinom(), dhyper(), dpois(), and ddunif() func-
tions.

To calculate quantiles use the qbinom(), qhyper(), qpois(), and qdunif() functions.

To generate random numbers use the rbinom(), rhyper(), rpois(), and rdunif() functions.

9.2 Exercises

The following exercises will help you practice some probability concepts and formulas. In particular,
the exercises work on:

• Calculating probabilities for discrete random variables.

• Calculating the expected value and standard deviation.

• Applying the binomial, Poisson and hypergeometric probability distributions.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

For the following exercises, make your calculations by hand and verify results with a calculator or
R.

1. Consider the table below. Calculate the mean and standard deviation. What is the probability
that 𝑥 < 15?

𝑥 5 10 15 20
𝑃(𝑋 = 𝑥) 0.35 0.3 0.2 0.15

2. Consider the table below. Calculate the mean and standard deviation. What is the probability
that 𝑥 ≥ −9?

𝑦 -23 -17 -9 -3
𝑃(𝑌 = 𝑦) 0.5 0.25 0.15 0.1
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3. The returns on a couple of funds depends on the state of the economy. The economy is
expected to be Good with a probability of 20%, Fair with probability of 50% and Poor with
probability of 30%. Which fund would you choose if you want to maximize your return?
What would you choose if you really dislike risk?

State of Economy Fund 1 Fund 2
Good 20 40
Fair 10 20
Poor -10 -40

Exercise 2

1. Use the table below. A portfolio has 200,000 dollars invested in Asset 𝑋 and 300,000 dollars
in asset 𝑌 . If the correlation coefficient between the two investments is 0.4, what is the
expected return and standard deviation of the portfolio?

Measure X Y
Expected Return (%) 8 12

Standard Deviation (%) 12 20

Exercise 3

1. Let 𝑍 be a binomial random variable with 𝑛 = 5 and 𝑝 = 0.35 use the binomial formula to
find 𝑃(𝑍 = 1), 𝑃 (𝑍 ≥ 2). What is the expected value and standard deviation of 𝑍?

2. Let 𝑊 be a binomial random variable with 𝑛 = 200 and 𝑝 = 0.77 use the binomial formula
to find 𝑃(𝑊 > 160), 𝑃(155 ≤ 𝑊 ≤ 165). What is the expected value and standard deviation
of 𝑊?

3. Sixty percent of a firm’s employees are men. Suppose four of the firm’s employees are randomly
selected. What is more likely, finding three men and one woman, or two men and one woman?
Does your answer change if the proportion falls to 50%?

Exercise 4

1. Assume that 𝑆 is a Poisson process with mean of 𝜇 = 1.5. Calculate 𝑃(𝑆 = 2) and 𝑃(𝑆 ≥ 2).
What is the mean and standard deviation of 𝑆?

2. Assume that 𝑇 is a Poisson process with mean of 𝜇 = 20. Calculate 𝑃(𝑇 = 14) and 𝑃(18 ≤
𝑇 ≤ 23).

3. A local pharmacy administers on average 84 Covid-19 vaccines per week. The vaccines shots
are evenly administered across all days. Find the probability that the number of vaccine shots
administered on a Wednesday is more than eight but less than 12.
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Exercise 5

1. Assume that 𝑋 is a hypergeometric random variable with 𝑁 = 25, 𝑆 = 3, and 𝑛 = 4.
Calculate 𝑃(𝑋 = 0), 𝑃(𝑋 = 1), and 𝑃(𝑋 ≤ 1).

2. Compute the probability of at least eight successes in a random sample of 20 items obtained
from a population of 100 items that contains 25 successes. What are the expected value and
standard deviation of the number of successes?

3. For 1 dollar a player gets to select six numbers for the base game of Powerball. In the game,
five balls are randomly drawn from 59 consecutively numbered white balls. One ball, called
the Powerball, is randomly drawn from 39 consecutively numbered red balls. What is the
probability that a player is able to match two out of five randomly drawn white balls? What
is the probability of winning the jackpot?

9.3 Answers

Exercise 1

1. The expected value is 10.75 and the standard deviation is 5.31. The probability of 𝑥 < 15 is
0.65.

In R we can create vectors for both 𝑥 and the probabilities 𝑃(𝑋 = 𝑥).

1 x<-c(5,10,15,20)
2 px<-c(0.35,0.3,0.2,0.15)

The expected value is the sum product of probabilities and values. Formally, ∑𝑛
𝑖=1 𝑥𝑖𝑝𝑖 and in R:

1 (ex<-sum(x*px))

[1] 10.75

The standard deviation is given by √∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)2𝑝𝑖. We can calculate it in R with the following

code:

1 (sd<-sqrt(sum((x-ex)^2*px)))

[1] 5.30919

2. The expected value is −17.4 and the standard deviation is 6.86. The probability of is 0.25.

Let’s create the vectors once more in R.
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1 y<-c(-23,-17,-9,-3)
2 py<-c(0.5,0.25,0.15,0.1)

The expected value is given by:

1 (ey<-sum(y*py))

[1] -17.4

The standard deviation is given by:

1 (sdy<-sqrt(sum((y-ey)^2*py)))

[1] 6.858571

3. Both funds have the same expected return of 6. The safest return comes from fund 1 since
the standard deviation is only 11.14 vs. 31.05 for fund 2.

In R we can create a data frame with probabilities and the performance of the funds.

1 funds<-data.frame(probs=c(0.2,0.5,0.3),fund1=c(20,10,-10), fund2=c(40,20,-40))

Let’s create a function for the expected value and standard deviation. For the expected value:

1 Expected_Value<-function(x,p){
2 sum(x*p)
3 }

Now we can use the formula to calculate the expected value of fund1:

1 Expected_Value(funds$fund1,funds$probs)

[1] 6

and fund 2:

1 Expected_Value(funds$fund2,funds$probs)

[1] 6

For the standard deviation we can create another function:
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1 Standard_Deviation<-function(x,p){
2 sqrt(sum((x-Expected_Value(x,p))^2*p))
3 }

Using the function to get the standard deviation of fund 1 we get:

1 Standard_Deviation(funds$fund1,funds$probs)

[1] 11.13553

and for fund 2:

1 Standard_Deviation(funds$fund2,funds$probs)

[1] 31.04835

Exercise 2

1. The expected return of the portfolio is 10.4 and the standard deviation is 14.60.

In R we can start by calculating the expected return. This is given by the formula 𝛼𝑅1 + 𝛽𝑅2:

1 (ER<-(2/5)*8+(3/5)*12)

[1] 10.4

Next we can find the standard deviation with the formula √𝛼2𝜎2
1 + 𝛽2𝜎2 + 𝛼𝛽𝜌𝜎1𝜎2:

1 (Risk<-sqrt(0.4^2*12^2 + 0.6^2*20^2+2*0.4*0.6*0.4*12*20))

[1] 14.59863

Exercise 3

1. 𝑃(𝑍 = 1) = 0.31, and 𝑃(𝑍 ≥ 2) = 0.57. The expected value is 𝑛𝑝 = 1.75 and the standard
deviation is √𝑛𝑝(1 − 𝑝) = 1.067.

Let’s use R and the dbinom() function to find 𝑃(𝑍 = 1).

1 dbinom(1,5,0.35)

[1] 0.3123859
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We can now use pbinom() to find the cumulative distribution. Since we want the right tale of the
distribution, we will specify this with an argument.

1 pbinom(1,5,0.35, lower.tail=F)

[1] 0.571585

2. 𝑃(𝑊 > 160) = 0.14, and 𝑃(155 ≤ 𝑊 ≤ 165) = 0.45. The expected value is 𝑛𝑝 = 154 and
the standard deviation is √𝑛𝑝(1 − 𝑝) = 5.95.

Using the pbinom() function we find that 𝑃(𝑊 > 160).

1 pbinom(160,200,0.77, lower.tail = F)

[1] 0.136611

We make two calculations to find the probability. First, 𝑃(𝑊 ≤ 165) and then 𝑃(𝑊 ≥ 154). The
difference between these two, gives us the desired outcome.

1 pbinom(165,200,0.77, lower.tail=T)-pbinom(154,200,0.77, lower.tail=T)

[1] 0.4487104

3. The probabilities are the same. Each event has a probability of 0.3456. If the probability
changes to 0.5 now the event of two women and two men is more likely.

Let’s calculate the probabilities in R. First, the probability of three men and one woman.

1 dbinom(3,4,0.6)

[1] 0.3456

Now the probability of two men and two women.

1 dbinom(2,4,0.6)

[1] 0.3456

Changing the probabilities reveals that:

1 dbinom(3,4,0.5)

[1] 0.25
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1 dbinom(2,4,0.5)

[1] 0.375

Having two of each is the most likely outcome.

Exercise 4

1. The 𝑃 (𝑆 = 2) = 0.25 and 𝑃(𝑆 ≥ 2) = 0.44. The expected value and the variance is 1.5.

In R we will make use of the dpois() function:

1 dpois(2,1.5)

[1] 0.2510214

For the second probability we will use ppois():

1 ppois(1,1.5, lower.tail=F)

[1] 0.4421746

2. The 𝑃 (𝑇 = 14) = 0.039 and 𝑃(18 ≤ 𝑇 ≤ 23) = 0.49.

Using the dpois() function once more:

1 dpois(14,20)

[1] 0.03873664

For the second probability we will find the difference between two probabilities:

1 ppois(23,20, lower.tail=T)-ppois(17,20, lower.tail=T)

[1] 0.4904644

3. The probability of administering more than 8 but less than 12 shots is 0.3.

Let’s first note that if 84 shots are administered on average weekly, then 12 are administered daily.
Now we can use this average and the ppois() function to find the probability:

1 ppois(11,12)-ppois(8,12)

[1] 0.3065696
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Exercise 5

1. 𝑃(𝑋 = 0) = 0.58, 𝑃 (𝑋 = 1) = 0.37, and 𝑃(𝑋 ≤ 1) = 0.94.

In R we can use the dhyper() function

1 dhyper(0,3,22,4)

[1] 0.5782609

once more for the second probability:

1 dhyper(1, 3, 22, 4)

[1] 0.3652174

For the last probability we can add the previous probabilities or use the phyper() function:

1 phyper(1, 3, 22, 4)

[1] 0.9434783

2. The probability is 0.545.

In R we use the dhyper() function once more:

1 dhyper(0, 2, 10, 3)

[1] 0.5454545

3. The probability of matching two white balls is 5. Winning the jackpot is extremely unlikely!
A probability of 0.00000000512. It is more likely to be struck by lightning according to the
CDC.

In R use the dhyper() function:

1 dhyper(2, 5, 54, 5)

[1] 0.04954472

For the jackpot we first calculate the probability of getting all of the white balls.
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1 options(digits = 5,scipen=999)
2 dhyper(5, 5, 54, 5)

[1] 0.00000019974

Now the probability of getting the Powerball.

1 dhyper(1, 1, 38, 1)

[1] 0.025641

Since the two events are independent, we can multiply them to find the probability of a jackpot.

1 dhyper(5, 5, 54, 5)*dhyper(1, 1, 38, 1)

[1] 0.0000000051217

88



10 Probability III

10.1 Concepts

Continuous Random Variables

Continuous random variables are characterized by their probability density function 𝑓(𝑥). The
probability density function does not directly provide probabilities!

The probability of a continuous random variable assuming a single value is zero. Instead, probabil-
ities are defined for intervals. These are calculated by areas under the PDF curve (integral).

Uniform Distribution

The uniform probability density function is given by 𝑓(𝑥) = 1
𝑏−𝑎 when 𝑎 ≤ 𝑥 ≤ 𝑏 and 0 otherwise.

The expected value of the uniform distribution is 𝐸(𝑥) = 𝑎+𝑏
2 .

The variance of the uniform distribution is 𝑣𝑎𝑟(𝑥) = (𝑏−𝑎)2

12

Normal Distribution

The normal PDF is given by 𝑓(𝑥) = 1
𝜎

√
2𝜋𝑒 −1

2 ( 𝑥−𝜇
𝜎 ), where 𝜇 is the mean, 𝜎 is the standard deviation,

𝜋 is 3.1415… , and 𝑒 is 2.7282… . The normal distribution has the following properties:

• The normal curve is symmetrical about the mean 𝜇.

• The mean is at the middle and divides the area of the distribution into halves.

• The total area under the curve is equal to 1.

• The distribution is completely determined by its mean and standard deviation.

The standard normal distribution has a mean of 0 and a standard deviation of 1.

Exponential Distribution

The exponential distribution is useful in computing probabilities for the time it takes to complete
a task. It describes the time between events in a Poisson process.

The probability density function is given by 𝑓(𝑥) = 1
𝜇𝑒 −𝑥

𝜇 .
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Triangular Distribution

The triangular distribution is characterized by a single mode (the peak of the distribution) and
two boundaries. It is often used in situations where the lower and upper bounds of a potential
outcome are known, but the exact likelihood of the outcome is uncertain.

The probability density function is given by 𝑓(𝑥) = 2(𝑥−𝑎)
(𝑏−𝑎)(𝑐−𝑎) for 𝑎 ≤ 𝑥 < 𝑐; 𝑓(𝑥) = 2

(𝑏−𝑎) for 𝑥 = 𝑐;
𝑓(𝑥) = 2(𝑏−𝑥)

(𝑏−𝑎)(𝑏−𝑐) for 𝑐 < 𝑥 ≤ 𝑏, and 𝑓(𝑥) = 0 otherwise.

The expected value of the distribution is 𝐸(𝑥) = 𝑎+𝑏+𝑐
3 .

The variance of the triangular distribution is 𝑣𝑎𝑟(𝑥) = 𝑎2+𝑏2+𝑐2−𝑎𝑏−𝑎𝑐−𝑏𝑐
18 .

Useful R Functions

To calculate the density of continuous random variables use the dunif(), dnorm(), and dexp()
functions. For the triangular distribution use the extraDistr package and the dtriang() function.

To calculate probabilities of continuous random variables use the punif(), pnorm(), pexp(), and
ptriang() functions.

To calculate quartiles of continuous random variables use the qunif(), qnorm(),qexp(), and
qtriang() functions.

To calculate generate random variables based on continuous random variables use the runif(),
rnorm(), rexp(), and rtriang() functions.

10.2 Exercises

The following exercises will help you practice some probability concepts and formulas. In particular,
the exercises work on:

• Calculating probabilities for continuous random variables.

• Calculating the expected value and standard deviation.

• Applying the uniform, normal, and exponential distributions.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.
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Exercise 1

For the following exercises, make your calculations by hand and verify results with a calculator or
R.

1. A random variable 𝑋 follows a continuous uniform distribution with minimum of −2 and
maximum of 4. Determine the height of the density function 𝑓(𝑥), the mean, the standard
deviation, and calculate 𝑃(𝑋 ≤ −1).

2. Your internet provider will arrive sometime between 10:00 am and 12:00 pm. Suppose you
have to run a quick errand at 10:00 am. If it takes 15 minutes to run the errand, what is the
probability that you will be back before the internet provider arrives? What if you take 30
minutes?

Exercise 2

1. A random variable 𝑍 follows a standard normal distribution. Find 𝑃(−0.67 ≤ 𝑍 ≤ −0.23),
𝑃(0 ≤ 𝑍 ≤ 1.96), 𝑃(−1.28 ≤ 𝑍 ≤ 0) and 𝑃(𝑍 > 4.2).

2. Let 𝑌 be normally distributed with 𝜇 = 2.5 and 𝜎 = 2. Find 𝑃(𝑌 > 7.6), 𝑃(7.4 ≤ 𝑌 ≤ 10.6),
a 𝑦 such that 𝑃(𝑌 > 𝑦) = 0.025, and a 𝑦 such that 𝑃(𝑦 ≤ 𝑌 ≤ 2.5) = 0.4943.

3. Assume that football game times are normally distributed with a mean of 3 hours and a
standard deviation of 0.4 hour. What is the probability that the game lasts at most 2.5
hours? Find the maximum value for a game to be in the bottom 1% of the distribution.

Exercise 3

1. Random variable 𝑆 is exponentially distributed with mean of 0.1. What is the standard
deviation of 𝑆? What is 𝑃(0.10 ≤ 𝑆 ≤ 0.2)?

2. A tollbooth operator has observed that cars arrive randomly at a rate of 360 cars per hour.
What is the mean time between car arrivals? What is the probability that the next car will
arrive within ten seconds?

10.3 Answers

Exercise 1

1. The height of the density function 𝑓(𝑥) = 0.1667, the mean is 1, standard deviation is 1.73,
and 𝑃(𝑋 ≤ −1) = 0.1667.

𝑓(𝑥) can be easily estimated by using the formula of the continuous uniform random variable.
𝑓(𝑥) = 1

𝑏−𝑎 . Using R as a calculator we find:

1 1/(4-(-2))
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[1] 0.1666667

The mean is given by 𝜇 = 𝑎+𝑏
2 . In R we determine that the mean is:

1 (-2+4)/2

[1] 1

The standard deviation is 𝜎 = √ (𝑏−𝑎)2

12 . Using R we find:

1 sqrt((4-(-2))^2/12)

[1] 1.732051

Finally, we can find the probability of 𝑍 being less than −1 by using the punif() function:

1 punif(-1,-2,4)

[1] 0.1666667

2. The probability that you will arrive on time is 0.875. If the time of the errand is 30 minutes,
then the probability goes down to 0.75.

There is a 120 minute interval in which the IP can arrive. The density function is given by
𝑓(𝑥) = 1/120. Using R we can find 𝑃(𝑋 > 15):

1 punif(15,0,120,lower.tail=F)

[1] 0.875

Once more we can find 𝑃(𝑋 > 30):

1 punif(30,0,120,lower.tail=F)

[1] 0.75

Exercise 2

1. 𝑃(−0.67 ≤ 𝑍 ≤ −0.23) = 0.158, 𝑃(0 ≤ 𝑍 ≤ 1.96) = 0.475, 𝑃(−1.28 ≤ 𝑍 ≤ 0) = 0.4 and
𝑃(𝑍 > 4.2) ≈ 0.

Use the pnorm() function to find the probabilities. 𝑃(−0.67 ≤ 𝑍 ≤ −0.23):
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1 pnorm(-0.23)-pnorm(-0.67)

[1] 0.157617

𝑃(0 ≤ 𝑍 ≤ 1.96)

1 pnorm(1.96)-pnorm(0)

[1] 0.4750021

𝑃(−1.28 ≤ 𝑍 ≤ 0)

1 pnorm(0)-pnorm(-1.28)

[1] 0.3997274

𝑃(𝑍 > 4.2)

1 options(scipen=999)
2 pnorm(4.2,lower.tail = F)

[1] 0.00001334575

2. 𝑃(𝑌 > 7.6) = 0.005386, 𝑃(7.4 ≤ 𝑌 ≤ 10.6) = 0.0071, a 𝑦 such that 𝑃(𝑌 > 𝑦) = 0.025 is 6.42,
and a 𝑦 such that 𝑃(𝑦 ≤ 𝑌 ≤ 2.5) is −2.56.

Let’s use once more the pnorm() function in R.

𝑃(𝑌 > 7.6)

1 pnorm(7.6,2.5,2,lower.tail = F)

[1] 0.005386146

𝑃(7.4 ≤ 𝑌 ≤ 10.6)

1 pnorm(10.6,2.5,2)-pnorm(7.4,2.5,2)

[1] 0.007117202

𝑦 such that 𝑃(𝑌 > 𝑦) = 0.025
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1 qnorm(0.025,2.5,2,lower.tail = F)

[1] 6.419928

𝑦 such that 𝑃(𝑦 ≤ 𝑌 ≤ 2.5) = 0.4943. Note that 2.5 is the mean. Hence we are looking for a 𝑦
that has 0.5 − 0.4943 = 0.0057 on the left:

1 qnorm(0.0057,2.5,2)

[1] -2.560385

3. The probability is 10.56%. A game lasting no more than 2.069 hours would be in the bottom
1%.

Let’s use pnorm() once more in R.

1 pnorm(2.5,3,0.4)

[1] 0.1056498

For the threshold we can use qnorm()

1 qnorm(0.01,3,0.4)

[1] 2.069461

Exercise 3

1. The standard deviation is equal to the mean 0.1. 𝑃(0.10 ≤ 𝑆 ≤ 0.2) = 0.2325

Let’s use pexp() in R:

1 pexp(0.2,rate = 10)-pexp(0.1,rate = 10)

[1] 0.2325442

2. The mean time between car arrivals is 1/360 = 0.002778. The probability that the next car
will arrive within the next 10 seconds is 0.6321.

Once more we use pexp() in R

1 pexp(1/360,360)

[1] 0.6321206
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Part IV

Statistical Inference
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11 Inference I

11.1 Concepts

Statistical Inference

The goal of statistical inference is gain insight on a population parameter by using a sample
statistic. It is required that the sample statistic be calculated from a random sample from the
population where each element is selected independently.

A sample mean is used to infer the population mean. Some properties of the sample mean are:

• The expected value of the sample means is equal to the population mean (i.e., the sample
mean is unbiased). Formally, 𝐸( ̄𝑥𝑖) = 𝜇.

• The standard deviation of the sample means is lower than the population standard deviation.
𝜎�̄� = 𝜎/√𝑛.

• If the population is normally distributed, then the sample means ( ̄𝑥’s) are normally dis-
tributed.

• If the population is not normally distributed, the the sample means are also normally dis-
tributed if the sample size is large (i.e., 𝑛 > 30). This is the central limit theorem.

Proportions

Recall that the binomial distribution describes the number of successes 𝑥 in 𝑛 trials of a Bernoulli
process where 𝑝 is the probability of success. Here, 𝑥/𝑛 is the proportion of successes.

• To estimate the population proportion use the sample proportion ̄𝑝 = 𝑥/𝑛. This
estimate is unbiased (i.e., 𝐸( ̄𝑝) = 𝑃 ), where 𝑃 is the population proportion.

• The standard error of the estimate is 𝑠𝑒( ̄𝑃 ) = √𝑝(1−𝑝)
𝑛 , where 𝑝 is the sample proportion,

and 𝑛 is the sample size.

• By the central limit theorem, the sampling distribution of ̄𝑝 is approximately normal when
𝑛𝑝 ≥ 5 and 𝑛(1 − 𝑝) ≥ 5.
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Useful R Functions

Here are some functions that are handy when simulating data in R.

The pnorm() and punif() functions calculate probabilities for the normal and uniform distributions,
respectively.

The rnorm() and runif() functions generate random numbers from a normal and uniform distri-
bution, respectively.

The for() function creates a loop that repeats a procedure a specified amount of times.

The set.seed() function is used to create reproducible results in R when random numbers are
used.

11.2 Exercises

The following exercises will help you test your knowledge on the Inference. In particular, the
exercises work on:

• The Central Limit Theorem.

• Sampling Distribution for means.

• Sampling Distribution for proportions.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

In this exercise we will be simulating the central limit theorem. You will need R to complete this
problem.

1. Create a random sample of 1000 data points and store it in an object called Population. Use
the uniform distribution with min of 100 and max of 200 to generate the sample. Calcu-
late the mean and standard deviation of the random sample and call PopMean and PopSD,
respectively.

2. Create a for loop (with 1000 iterations) that takes a sample of 10 points from population,
calculate the mean, and then store the result in a vector called SampleMeans. Calculate the
mean of the SampleMeans object. How does this mean compare to PopMean? How does the
standard deviation compare to PopSD?

3. Create a histogram for the sample means. Is the distribution uniform? Is it normal? What
is the probability that the sample mean is between 140 and 160?
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Exercise 2

1. A random sample of 𝑛 = 100 is taken from a population with mean 𝜇 = 80 and standard
deviation 𝜎 = 14. Calculate the expected value and standard error for the sampling distribu-
tion of the sampling means. What is the probability that the sample mean falls between 77
and 85?

2. Assume that miles-per-gallons of combustion cars are normally distributed with mean of 33.8
and standard deviation of 3.5. What is the probability that the mean mpg of four randomly
selected cars is more than 35? What is the probability that all four selected cars have mpg
greater than 35?

Exercise 3

1. A random sample of 𝑛 = 200 is taken from a population with a proportion of 𝑝 = 0.75.
Calculate the expected value and standard error of the proportion sampling distribution.
What is the probability that the sample proportion is between 0.7 and 0.8?

2.Twenty-three percent of employees at a fintech firm work from home. If we take a sample of 50
employees, what is the probability that more than 20% of them are working from home? What if
the sample increases to 200? Why does the probability change?

Exercise 4

1. A production process for energy drinks is being evaluated. The machine that fills the cans
is calibrated so that each can has 350ml of drink with a standard deviation of 10ml. Every
hour, ten cans are sampled and the average amount of drink is recorded (see table below). Is
the machine working properly?

1 2 3 4 5 6 7 8
̄𝑥 = 310 ̄𝑥 = 315 ̄𝑥 = 325 ̄𝑥 = 330 ̄𝑥 = 328 ̄𝑥 = 347 ̄𝑥 = 339 ̄𝑥 = 350

2. The production of Good Guy dolls has a 1% defective rate. A quality inspector takes five
samples of size 1000. The proportions are shown in the table below. Is the production process
under control?

1 2 3 4 5
̄𝑝 = 0.009 ̄𝑝 = 0.012 ̄𝑝 = 0.008 ̄𝑝 = 0.011 ̄𝑝 = 0.0102
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11.3 Answers

Exercise 1

Let’s start by creating the random sample. We can use the runif() function in R to do this. We
will set a seed so that results are reproducible.

1 set.seed(10)
2 Population<-runif(1000,100,200)

Next, we can save the mean and the standard deviation of the population in two different object:

1 PopMean<-mean(Population)
2 PopSD<-sd(Population)

The mean and standard deviation are 150.53 and 29.2. Let’s quickly create a histogram of popula-
tion, so that we can convince ourselves that the data is uniformly distributed.

1 hist(Population, main="", ylim=c(0,160), col="#F5F5F5")

Population

F
re

qu
en

cy

100 120 140 160 180 200

0
50

10
0

15
0

2. Now let’s create a for loop that allows us to sample the population several times. In fact, we
will sample the population 1000 times and record the mean of the samples.

1 nrep<-1000
2 SampleMeans<-c()
3 for (i in 1:nrep){
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4 x<-sample(Population,10,replace=T)
5 SampleMeans<-c(SampleMeans,mean(x))
6 }

Now we can calculate the mean of the sample means in R:

1 mean(SampleMeans)

[1] 150.4177

Note that the mean is very close to PopMean. In the limit (that is if we take many more samples),
these two values are equal to each other. Now let’s calculate the standard deviation of the sample
means.

1 sd(SampleMeans)

[1] 9.134147

As you can see, the standard deviation is much lower. In fact, if we take PopSD and divide by 10
(the size of the sample), we should get close to the standard deviation of the sample means.

1 PopSD/sqrt(10)

[1] 9.233644

3. To create the histogram we use the hist() function once more:

1 hist(SampleMeans, main="", ylim=c(0,300), col="#F5F5F5")
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The distribution looks normal. To be clear, if the population follows a uniform distribution, we have
shown that the distribution of the sample means is normal with a mean equal to the population
mean and a smaller standard deviation.
We can use the distribution of the sample means to calculate the probability. Noting the the
distribution is normal:

1 pnorm(160,mean(SampleMeans),sd(SampleMeans))-pnorm(140,mean(SampleMeans),sd(SampleMeans))

[1] 0.7258913

There is a 72.59% probability that the sample mean is between 140 and 160.

Exercise 2

1. The expected value is 80 since it is equal to the mean of the population. The standard error
is 1.4. The probability is 98.38%.

We can use R as a calculator to find the standard error.

1 14/sqrt(100)

[1] 1.4

We can use pnorm() to find the probability:
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1 pnorm(85,80,1.4)-pnorm(77,80,1.4)

[1] 0.9837602

2. The probabilities are 24.66% and 1.8%.

For the first probability we can use a sample size of 4 and use the standard error in the pnorm()
function.

1 pnorm(35,33.8,3.5/sqrt(4),lower.tail = F)

[1] 0.2464466

For the second probability we can first calculate the probability that a randomly selected car has
mpg greater than 35. In R:

1 (p35<-pnorm(35,33.8,3.5,lower.tail = F))

[1] 0.365853

Since draws are independent we get:

1 p35^4

[1] 0.01791539

Exercise 3

1. The expected value is 0.75, the same as the population. The standard error is √𝑝(1 − 𝑝)/𝑛 =
0.03. The probability for a sample of 200 is 0.8975.

The standard error is given by:

1 sqrt(0.75*0.25/200)

[1] 0.03061862

In R we can use the pnorm() function one more time to find the probability.

1 pnorm(0.8,0.75,sqrt(0.75*0.25/200))-pnorm(0.7,0.75,sqrt(0.75*0.25/200))

[1] 0.8975296
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2. The probability with a sample of 50 is 69.29%. When the sample is 200 the probability is
84.33%. As the sample size increases the standard error goes down. This means that the
distribution of the sample proportions gets tighter and there is more area to the right of
̄𝑝 = 0.2.

In R we can use the pnorm() function one more time with a mean of 0.2 and 𝑛 = 50.

1 pnorm(0.2,0.23,sqrt(0.23*0.77/50),lower.tail = F)

[1] 0.6928964

Updating the code so that 𝑛 = 200 yields:

1 pnorm(0.2,0.23,sqrt(0.23*0.77/200),lower.tail = F)

[1] 0.8433098

Exercise 4

1. The process seems to be out of control. In the early samples, the machine is not filling the cans
with enough drink. Although, in the later periods the machine reverts back to the expected
performance, it seems unlikely that it will remain functioning correctly.

Let’s start by calculating the upper and lower limits in R.

1 dataEx1<-c(310,315,325,330,328,347,339,350)
2 ulEx1<-350+3*(10/sqrt(10))
3 llEx1<-350-3*(10/sqrt(10))

We can graph the samples and the limits to determine the stability of the production process.

1 plot(dataEx1, type="b", ylab="Mean Gallons",
2 xlab="Period", pch=21, bg="blue",ylim=c(280,380))
3 abline(h=ulEx1,col="red")
4 abline(h=llEx1,col="red")
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2. Good Dolls production looks good. All proportions fall between three standard errors of the
mean.

Once more we can calculate upper and lower limits for the proportions.

1 dataEx2<-c(0.009,0.012,0.008,0.011,0.0102)
2 ulEx2<-0.01+3*sqrt(0.01*0.99/1000)
3 llEx2<-0.01-3*sqrt(0.01*0.99/1000)

Graphing the results in R we can observe the production process and the sample proportions.

1 plot(dataEx2, type="b", ylab="Proportion Defective",
2 xlab="Period", pch=21, bg="blue",ylim=c(0,0.02))
3 abline(h=ulEx2,col="red")
4 abline(h=llEx2,col="red")
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12 Inference II

12.1 Concepts

Confidence Intervals

A confidence interval provides a range of values that, with a certain level of confidence, contains
the population parameter of interest. For proper confidence intervals ensure that the sampling
distributions are normal.

A 95% confidence level, indicates that if the interval were constructed many times (from inde-
pendent samples of the population), it would include the true population parameter 95% of the
time.

A significance level (𝛼) of 5%, means that the confidence interval would would not include the
true population parameter 5% of the time.

The interval for the population mean when the population standard deviation is unknown is given
by ̄𝑥 ± 𝑡𝛼/2

𝑠
𝑛 , where ̄𝑥 is the point estimate, 𝑡𝑎/2

𝑠
𝑛 is the margin of error, and 𝛼 is the allowed

probability that the interval does not include 𝜇.

The interval for the population proportion mean is given by ̄𝑝 ± 𝑧𝛼/2√ �̄�(1−�̄�)
𝑛 .

Useful R Functions

The qnorm() and qt() functions calculate quartiles for the normal and 𝑡 distributions, respec-
tively.

The if() function creates a conditional statement in R.

12.2 Exercises

The following exercises will help you test your knowledge on Statistical Inference. In particular,
the exercises work on:

• Simulating confidence intervals.

• Estimating confidence intervals in R.

• Estimating confidence intervals for proportions.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.
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Exercise 1

In this exercise you will be simulating confidence intervals.

1. Set the seed to 9. Create a random sample of 1000 data points and store it in an object
called Population. Use the exponential distribution with rate of 0.02 to generate the data.
Calculate the mean and standard deviation of Population and call them PopMean and PopSD
respectively. What are the mean and standard deviation of Population?

2. Create a for loop (with 10,000 iterations) that takes a sample of 50 points from Population,
calculates the mean, and then stores the result in a vector called SampleMeans. What is the
mean of the SampleMeans?

3. Create a 90% confidence interval using the first data point in the SampleMeans vector. Does
the confidence interval include PopMean?

4. Now take the minimum of the SampleMeans vector. Create a new 90% confidence interval.
Does the interval include PopMean? Out of the 10, 000 intervals that you could construct
with the vector SampleMeans, how many would you expect to include PopMean?

Exercise 2

1. A random sample of 24 observations is used to estimate the population mean. The sample
mean is 104.6 and the standard deviation is 28.8. The population is normally distributed.
Construct a 90% and 95% confidence interval for the population mean. How does the confi-
dence level affect the size of the interval?

2. A random sample from a normally distributed population yields a mean of 48.68 and a
standard deviation of 33.64. Compute a 95% confidence interval assuming a) that the sample
size is 16 and b) the sample size is 25. What happens to the confidence interval as the sample
size increases?

Exercise 3

You will need the sleep data set for this problem. The data is built into R, and displays the effect
of two sleep inducing drugs on students. Calculate a 95% confidence interval for group 1 and for
group 2. Which drug would you expect to be more effective at increasing sleeping times?

Exercise 4

1. A random sample of 100 observations results in 40 successes. Construct a 90% and 95%
confidence interval for the population proportion. Can we conclude at either confidence level
that the population proportion differs from 0.5?

2. You will need the HairEyeColor data set for this problem. The data is built into R, and
displays the distribution of hair and eye color for 592 statistics students. Construct a 95
confidence interval for the proportion of Hazel eye color students.
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12.3 Answers

Exercise 1

1. The mean of Population is 48.61. The standard deviation is 47.94.

Start by generating values from the exponential distribution. You can use the rexp() function in
R to do this. Setting the seed to 9 yields:

1 set.seed(9)
2 Population<-rexp(1000,0.02)

The population mean is:

1 (PopMean<-mean(Population))

[1] 48.61053

The standard deviation is:

1 (PopSD<-sd(Population))

[1] 47.94411

2. The mean is very close to the population mean 48.83. The standard deviation is 6.83.

In R you can use a for loop to create the vector of sample means.

1 nrep<-10000
2 SampleMeans<-c()
3 for (i in 1:nrep){
4 x<-sample(Population,50,replace=T)
5 SampleMeans<-c(SampleMeans,mean(x))
6 }

The mean of SampleMeans is:

1 (xbar<-mean(SampleMeans))

[1] 48.7005

The standard deviation is:

1 (Standard<-sd(SampleMeans))
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[1] 6.827595

3. The confidence interval is [47.71,70.17]. Since the population mean is equal to 48.61, the
confidence interval does include the population mean.

Let’s construct the upper an lower limits of the interval in R.

1 (ll<-SampleMeans[1]+qnorm(0.05)*Standard)

[1] 47.71385

1 (ul<-SampleMeans[1]-qnorm(0.05)*Standard)

[1] 70.17464

4. The confidence interval is [14.86,37.32]. This interval does not include the population mean
of 48.61. Out of the 10, 000 confidence intervals, one would expect about 9, 000 to include
the population mean.

Let’s find the confidence interval limits using R.

1 (Minll<-min(SampleMeans)+qnorm(0.05)*Standard)

[1] 14.85631

1 (Minul<-min(SampleMeans)-qnorm(0.05)*Standard)

[1] 37.31709

We can confirm in R that about 9, 000 of the intervals include PopMean. Once more, let’s use a
for loop to construct confidence intervals for each element in SampleMeans and check whether the
PopMean is included. The count variable keeps track of how many intervals include the population
mean.

1 count=0
2

3 for (i in SampleMeans){
4 (ll<-i+qnorm(0.05)*Standard)
5 (ul<-i-qnorm(0.05)*Standard)
6 if (PopMean<=ul & PopMean>=ll){
7 count=count+1
8 }
9 }

10
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11 count

[1] 8978

Exercise 2

1. The 90% confidence interval is [94.52,114.67] and the 95% confidence interval is [114.68,116.76].
The larger the confidence level, the larger the interval.

Let’s construct the intervals using R. Since the population standard deviation is unknown we will
use the t-distribution. The interval is constructed as ̄𝑥 ± 𝑡𝛼/2

𝑠√𝑛 .

1 (ul90<-104.6-qt(0.05,23)*28.8/sqrt(24))

[1] 114.6755

1 (ll90<-104.6+qt(0.05,23)*28.8/sqrt(24))

[1] 94.52453

For the 95% confidence interval we adjust the significance level accordingly.

1 (ul95<-104.6-qt(0.025,23)*28.8/sqrt(24))

[1] 116.7612

1 (ll95<-104.6+qt(0.025,23)*28.8/sqrt(24))

[1] 92.43883

2. The confidence interval for a sample size of 16 is [30.75,66.61]. The confidence interval when
the sample size is 25 is [34.79,62.57]. As the sample size gets larger, the confidence interval
gets narrower and more precise.

Let’s use R again to calculate the confidence interval. For a sample size of 16 the interval is:

1 (ul16<-48.68-qt(0.025,15)*33.64/sqrt(16))

[1] 66.60549
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1 (ll16<-48.68+qt(0.025,15)*33.64/sqrt(16))

[1] 30.75451

Increasing the ample size to 25 yields:

1 (ul25<-48.68-qt(0.025,24)*33.64/sqrt(25))

[1] 62.56591

1 (ll25<-48.68+qt(0.025,24)*33.64/sqrt(25))

[1] 34.79409

Exercise 3

1. The 95% confidence interval for group 1 is [−0.36,1.86].

Let’s first calculate the standard error for group 1.

1 (se1<-sd(sleep$extra[sleep$group==1])/sqrt(length(sleep$extra[sleep$group==1])))

[1] 0.5657345

We can now use the standard error to estimate the lower and upper limits of the confidence inter-
val.

1 (ll1<-mean(sleep$extra[sleep$group==1])+qnorm(0.025)*se1)

[1] -0.3588193

1 (ul1<-mean(sleep$extra[sleep$group==1])-qnorm(0.025)*se1)

[1] 1.858819

2. The 95% confidence interval for group 2 is [1.09,3.57].

Let’s repeat the procedure for group 2. Start by finding the standard error.

1 (se2<-sd(sleep$extra[sleep$group==2])/sqrt(length(sleep$extra[sleep$group==2])))

[1] 0.6331666

Using the standard error we can complete the confidence interval.
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1 (ll2<-mean(sleep$extra[sleep$group==2])+qnorm(0.025)*se2)

[1] 1.089016

1 (ul2<-mean(sleep$extra[sleep$group==2])-qnorm(0.025)*se2)

[1] 3.570984

3. Drug 2. Drug 2 does not include zero in the interval, and the interval is to the right of zero.
It is unlikely, that drug 2 has no effect on students sleeping time. Additionally, Drug 2’s mean
increase in sleeping hours is 2.33 vs. 0.75 for drug 1.

Exercise 4

1. The 90% and 95% confidence intervals are [0.319,0.481], and [0.304,0.496] respectively. Since
they do not include 0.5, we can conclude that the population proportion is significantly
different from 0.5.

We can create an object that stores the sample proportion and sample in R:

1 (p<-0.4)

[1] 0.4

1 (n<-100)

[1] 100

The 90% confidence interval is given by:

1 (Ex1ll90<-p+qnorm(0.05)*sqrt(p*(1-p)/100))

[1] 0.319419

1 (Ex1ul90<-p-qnorm(0.05)*sqrt(p*(1-p)/100))

[1] 0.480581

The 95% confidence interval is:
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1 (Ex1ll90<-p+qnorm(0.025)*sqrt(p*(1-p)/100))

[1] 0.3039818

1 (Ex1ul90<-p-qnorm(0.025)*sqrt(p*(1-p)/100))

[1] 0.4960182

2. The 90% confidence interval is [0.132,0.182].The 95% confidence interval is [0.128,0.186].

The data can easily be viewed by calling HairEyeColor in R.

1 HairEyeColor

, , Sex = Male

Eye
Hair Brown Blue Hazel Green

Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

, , Sex = Female

Eye
Hair Brown Blue Hazel Green

Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

Note that there are three dimensions to this table (Hair, Eye, Sex). We can calculate the proportion
of Hazel eye colored students with the following command that makes use of indexing:

1 (p<-(sum(HairEyeColor[,3,1])+sum(HairEyeColor[,3,2]))/sum(HairEyeColor))

[1] 0.1570946

Now we can use this proportion to construct the intervals. Recall that for proportions the interval
is calculated by ̄𝑝 ± 𝑧𝛼/2√ �̄�(1−�̄�)

𝑛 . The 90% confidence interval is given by:
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1 (Ex2ll90<-p+qnorm(0.05)*sqrt(p*(1-p)/592))

[1] 0.1324945

1 (Ex2ul90<-p-qnorm(0.05)*sqrt(p*(1-p)/592))

[1] 0.1816947

The 95% confidence interval is:

1 (Ex2ll95<-p+qnorm(0.025)*sqrt(p*(1-p)/592))

[1] 0.1277818

1 (Ex2ul95<-p-qnorm(0.025)*sqrt(p*(1-p)/592))

[1] 0.1864074
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13 Inference III

13.1 Concepts

Hypothesis Testing

The null hypothesis is a statement about the population parameter. Usually, the status quo. In
research, it states no effect or no relationship between variables. The null hypothesis includes some
form of the equality sign (i.e., ≥, ≤, or =).

The alternative hypothesis directly contradicts the null hypothesis. In research, it states the
prediction of the effect or relationship. The alternative includes non-equality signs (i.e., >, <, or
≠).

To conduct hypothesis testing:

1. Specify the null and alternate hypothesis.

• For means use:

– 𝐻𝑜 ∶ 𝜇 ≤ 0; 𝐻𝑎 ∶ 𝜇 > 𝜇𝑜 right-tail probability

– 𝐻𝑜 ∶ 𝜇 ≥ 0; 𝐻𝑎 ∶ 𝜇 < 𝜇𝑜 left-tail probability

– 𝐻𝑜 ∶ 𝜇 = 0; 𝐻𝑎 ∶ 𝜇 ≠ 𝜇𝑜 two-tail probability

• For proportions use:

– 𝐻𝑜 ∶ 𝑃 ≤ 0; 𝐻𝑎 ∶ 𝑃 > 𝑃𝑜 right-tail probability

– 𝐻𝑜 ∶ 𝑃 ≥ 0; 𝐻𝑎 ∶ 𝑃 < 𝑃𝑜 left-tail probability

– 𝐻𝑜 ∶ 𝑃 = 0; 𝐻𝑎 ∶ 𝑃 ≠ 𝑃𝑜 two-tail probability

2. Specify the confidence level (i.e., the proportion of times that the hypothesis would hold
true). Usually, 0.90, 0.95, or 0.99.

3. Calculate the test statistic.

• For a test on means use 𝑡𝑑𝑓 = �̄�−𝜇𝑜
𝑠/√𝑛 , where 𝑑𝑓 = 𝑛 − 1, ̄𝑥 is the sample mean, 𝜇𝑜 is the

hypothesized value of 𝜇, 𝑠 is the sample standard deviation, and 𝑛 is the sample size.

• For a test on proportions use 𝑧 = �̄�−𝑃𝑜
√𝑃𝑜(1−𝑃𝑜)/√𝑛 , where ̄𝑝 is the sample proportion, 𝑃𝑜 is

the hypothesized value of the population proportion 𝑃 , and 𝑛 is the sample size.

4. Find the p-value (i.e., the likelihood that the hypothesis was rejected by chance). (Substitute
𝑡 for 𝑧 if using proportions)
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• For a right-tail test, the 𝑝-value is 𝑃(𝑇 ≥ 𝑡).
• For a left-tail test, the 𝑝-value is 𝑃(𝑇 ≤ 𝑡).
• For a two-tail test, the 𝑝-value is 2𝑃(𝑇 ≥ 𝑡) if 𝑡 > 0 or 2𝑃(𝑇 ≤ 𝑡) if 𝑡 < 0.

5. The decision rule is to reject the null hypothesis when the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼, and not to reject
when 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≥ 𝑎𝑙𝑝ℎ𝑎.

Useful R Functions

t.test() generates a 𝑡-test for a vector of values. Use the alternative argument to specify “right”,
“left” or “two-tailed” test. The mu argument specifies the hypothesized value for the mean. The
conf.level sets the confidence level of the test.

prop.test() generates a proportion test when provided the number of successes and sample size.

13.2 Exercises

The following exercises will help you test your knowledge on Hypothesis Testing. In particular, the
exercises work on:

• Stating Null and Alternate Hypothesis.

• Determine the statistical validity of the null hypothesis.

• Conducting t-tests in R.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

1. Consider the following hypothesis: 𝐻𝑜 ∶ 𝜇 = 50, 𝐻𝑎 ∶ 𝜇 ≠ 50. A sample of 16 observations
yields a mean of 46 and a standard deviation of 10. Calculate the value of the test statistic.
At a 5% significance level, does the population mean differ from 50?

2. Consider the following hypothesis: 𝐻𝑜 ∶ 𝜇 ≥ 100, 𝐻𝑎 ∶ 𝜇 < 100. You take a sample from a
normally distributed population that yields the values in the table below. Conduct a test at
a 1% significance level to prove the hypothesis.

96 102 93 87 92 82

3. Consider the following hypothesis: 𝐻𝑜 ∶ 𝜇 ≤ 210, 𝐻𝑎 ∶ 𝜇 > 210. You take a sample from a
normally distributed population that yields the values in the table below. Conduct a test at
a 10% significance level to prove the hypothesis.
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210 220 299 220 290 280 233 221 292 299

Exercise 2

According to a www.nps.gov, the period of time between Old Faithful’s eruptions is on average is
92 minutes. Use the built in faithful R data set and a two tail test to determine whether this
claim is true.

Exercise 3

1. To test if the population proportion differs from 0.4, a scientist draws a random sample of
100 observations and obtain a sample proportion of 0.48. Specify the competing hypothesis.
At a 5% significance level, does the population proportion differ from 0.4?

2. When taking a sample of 320 observations, 128 result in success.Test the following hypothesis
𝐻𝑜 ∶ 𝑝 ≥ 0.45, 𝐻𝑎 ∶ 𝑝 < 0.45 at a 5% significance level.

3. Determine if more than 50% of the observations in a population are below 10 with the sample
data below. Conduct the test at a 1% significance level.

8 12 5 9 14 11 9 3 7 12

Exercise 4

According to www.worldatlas.com, 5% of the population has hazel color eyes. Use the built in
HairEyeColor R data set and a two tail test to determine whether this claim is true.

13.3 Answers

Exercise 1

1. The sample statistic is −1.6. The null hypothesis can’t be rejected at a 5% significance
level since the p-value is 13.04%. We conclude that the population mean is not statistically
different from 50.

In R we can calculate the t-statistic.

1 muEx1<-50
2 sigmaEx1<-10
3 n<-16
4

5 (teststat<-(46-muEx1)/(sigmaEx1/sqrt(n)))
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[1] -1.6

1 (tcrit<-qt(0.025,n-1))

[1] -2.13145

Since the t-statistic is greater than the critical value of −2.13, we can’t reject the null. We can also
estimate the p-value to confirm this finding. Recall that the P-value is the likelihood of obtaining
a sample mean at least as extreme as the one derived from the given sample.

1 2*pt(teststat,n-1)

[1] 0.130445

2. The null hypothesis that 𝐻𝑜 ∶ 𝜇 ≥ 100 can’t be rejected since the p-value of 1.9% is greater
than the 1% significance level.

Let’s start by creating an object to store the values of our sample.

1 sample2<-c(96,102,93,87,92,82)

Now we can construct the t-stat and calculate the critical value.

1 mean2<-mean(sample2)
2 standard2<-sd(sample2)
3 n2<- length(sample2)
4 (tstat2<-(mean2-100)/(standard2/sqrt(n2)))

[1] -2.816715

Lastly, we can calculate the p-value.

1 pt(tstat2,n2-1)

[1] 0.0186262

We can also verify our result using the t.test() function in R.

1 t.test(sample2,alternative = "less",mu = 100,conf.level = 0.99)
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One Sample t-test

data: sample2
t = -2.8167, df = 5, p-value = 0.01863
alternative hypothesis: true mean is less than 100
99 percent confidence interval:

-Inf 101.557
sample estimates:
mean of x

92

3. The null hypothesis that 𝐻𝑜 ∶ 𝜇 ≤ 210 can be rejected since the p-value of 0.2% is less than
the 10% significance level.

Let’s create the object in R with the data.

1 sample3<-c(210,220,299,220,290,280,233,221,292,299)

Using the t.test() function we find:

1 t.test(sample3,alternative="greater",mu=210,conf.level=0.9)

One Sample t-test

data: sample3
t = 3.8333, df = 9, p-value = 0.002004
alternative hypothesis: true mean is greater than 210
90 percent confidence interval:
239.6593 Inf
sample estimates:
mean of x

256.4

Exercise 2

The claim that the duration between eruptions is 92 minutes can be rejected at a 10%, 5%, and
1% significance level.

Once more calculate the t-test in R with the t.test() function.

1 t.test(faithful$waiting,alternative = "two.sided",mu=92, conf.level = 0.99)

One Sample t-test
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data: faithful$waiting
t = -25.601, df = 271, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 92
99 percent confidence interval:
68.75871 73.03541
sample estimates:
mean of x
70.89706

Exercise 3

1. The competing hypothesis are 𝐻𝑜 ∶ 𝑝 = 0.4, 𝐻𝑎 ∶ 𝑝 ≠ 0.4. At a 5% significance level we
can’t reject the null hypothesis since the p-value of the test statistic (0.102) is greater than
the significance level (0.05). We conclude that the population proportion is not significantly
different from 0.4.

In R we can calculate the test statistic �̄�−𝑝𝑜
√𝑝𝑜(1−𝑝𝑜)/𝑛 .

1 (pstat<-(0.48-0.4)/sqrt(0.4*(1-0.4)/100))

[1] 1.632993

Now we can use the pnorm() function in R to get the p-value. Since it is a two-tailed test we
multiply the probability by 2.

1 2*pnorm(pstat,lower.tail = F)

[1] 0.1024704

2. From the sample 40% are labeled as success. Testing the hypothesis reveals that we can reject
the null at a 5% significance level. We conclude that the population proportion is less than
0.45.

We once again create the test statistic in R.

1 (pstat2<-(0.4-0.45)/sqrt(0.45*(1-0.45)/320))

[1] -1.797866

With the statistic, we can now find the p-value:

1 pnorm(pstat2,lower.tail = T)
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[1] 0.0360991

3. The competing hypothesis are 𝐻𝑜 ∶ 𝑝 ≤ 0.5, 𝐻𝑎 ∶ 𝑝 > 0.5. At a 1% significance level we
can’t reject the null hypothesis since the p-value of the test statistic (0.26) is greater than
the significance level (0.01). We conclude that more than 50% of the observations in the
population are below 10.

Let’s create an object to store the values.

1 values<-c(8,12,5,9,14,11,9,3,7,12)

Now, let’s count how many values are below 10 and calculate the proportion.

1 sum(values<10)/length(values)

[1] 0.6

Lastly, we find the test-statistic and p-value:

1 pstat3<-(0.6-0.5)/sqrt(0.5*(1-0.5)/10)
2 pnorm(pstat3,lower.tail = F)

[1] 0.2635446

We can also use the prop.test() function in R to confirm our result.

1 prop.test(6,10,p=0.5,alternative = "greater", conf.level = 0.99,
2 correct=F)

1-sample proportions test without continuity correction

data: 6 out of 10, null probability 0.5
X-squared = 0.4, df = 1, p-value = 0.2635
alternative hypothesis: true p is greater than 0.5
99 percent confidence interval:
0.2724654 1.0000000
sample estimates:

p
0.6

Exercise 4

1. We reject the null hypothesis that 5% of the population has hazel eyes with our sample.

The number of people with Hazel eyes is calculated as:
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1 (s<-sum(HairEyeColor[,3,1]+HairEyeColor[,3,2]))

[1] 93

The total number of people in the survey is given by:

1 (t<-sum(HairEyeColor))

[1] 592

We can use the prop.test() function once more:

1 prop.test(93,592,p=0.05,alternative = "two.sided", conf.level = 0.95, correct=F)

1-sample proportions test without continuity correction

data: 93 out of 592, null probability 0.05
X-squared = 142.94, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.05
95 percent confidence interval:
0.1300037 0.1886070
sample estimates:

p
0.1570946
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14 Regression and Inference

14.1 Concepts

Correlation Significance

To determine the statistical significance of the correlation coefficient we test:

• 𝐻𝑜 ∶ 𝜌 ≥ 0; 𝐻𝑎 ∶ 𝜌 < 0 left tail

• 𝐻𝑜 ∶ 𝜌 ≤ 0; 𝐻𝑎 ∶ 𝜌 > 0 right tail

• 𝐻𝑜 ∶ 𝜌 = 0; 𝐻𝑎 ∶ 𝜌 ≠ 0 two tails

The test statistic for the correlation is given by 𝑡𝑑𝑓 = 𝑟𝑥𝑦
√

𝑛−2
√1−𝑟2𝑥𝑦

, where 𝑑𝑓 = 𝑛 − 2 and 𝑟𝑥𝑦 is the

sample correlation coefficient.

Run the cor.test() function to perform the test on two vectors. Here is a list of arguments to
use:

• alternative: is a choice between “two.sided”, “less” and “greater”.

• conf.level: sets the confidence level. Enter as a decimal and not percentage.

Difference of Means Tests

Tests for inference about the difference of two population means.

• The test for unpaired mean differences (not equal variances) is given by 𝑡𝑑𝑓 = (�̄�1−�̄�2)− ̄𝑑𝑜

√ 𝑠2
1

𝑛1
𝑠2

2
𝑛2

.

• The test for unpaired mean difference (equal variances) is given by 𝑡𝑑𝑓 = (�̄�1−�̄�2)− ̄𝑑𝑜
√𝑠2𝑝( 1

𝑛1 + 1
𝑛2 )

.

• The test for paired mean difference is given by 𝑡𝑑𝑓 = ̄𝑑−𝑑𝑜𝑠√𝑛
.

Run these test in R by using the t.test() function. Here is a list of arguments to use:

• paired: use True for paired, False for independent. The default is False.

• var.equal: use True for equal variances, False for unequal. The default is False.

• mu: a value that indicate the hypothesized value of the mean or mean difference.

• alternative: is a choice between “two.sided”, “less” and “greater”.

• conf.level: sets the confidence level. Enter as a decimal and not percentage.
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Regression Inference

When running regression a couple of test can be performed on the coefficients to determine signifi-
cance:

• The first test competing hypothesis are 𝐻𝑜 ∶ 𝛽𝑗 = 0; 𝐻𝑎 ∶ 𝛽𝑗 ≠ 0. The test statistic for the
intercept (slope) coefficient is given by 𝑡𝑑𝑓 = 𝑏𝑗

𝑠𝑒(𝑏𝑗) .

• The second test competing hypothesis are 𝐻𝑜 ∶ 𝛽1 = 𝛽2 = ...𝛽𝑘 = 0; 𝐻𝑎 ∶ at least one 𝛽𝑖 ≠ 0.
The joint test of significance is given by 𝐹𝑑𝑓1,𝑑𝑓2

= 𝑆𝑆𝑅/𝑘
𝑆𝑆𝐸/(𝑛−𝑘−1) = 𝑀𝑆𝑅

𝑀𝑆𝐸 . The Anova table
below shows more detail on this test.

Anova df SS MS F Significance
Regression 𝑘 𝑆𝑆𝑅 𝑀𝑆𝑅 = 𝑆𝑆𝑅

𝑘 𝐹𝑑𝑓1,𝑑𝑓2
=

𝑀𝑆𝑅
𝑀𝑆𝐸

𝑃(𝐹) ≥ 𝑀𝑆𝑅
𝑀𝑆𝐸

Residual 𝑛 − 𝑘 − 1 𝑆𝑆𝐸 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛−𝑘−1
Total 𝑛 − 1 𝑆𝑆𝑇

To conduct these tests, save the lm() model into an object. The summary() function can then be
used to retrieve the results of the tests on the model’s parameters. Use the anova() function to
obtain the Anova table.

14.2 Exercises

The following exercises will help you test your knowledge on Regression and Inference. In particular,
the exercises work on:

• Determining the significance of correlations.

• Conduct paired and unpaired test of means and proportions.

• Determining the significance of the slope and intercept estimates both individually and jointly.

• Developing prediction intervals.

Answers are provided below. Try not to peak until you have a formulated your own answer and
double checked your work for any mistakes.

Exercise 1

1. Consider the following competing hypothesis: 𝐻𝑜 ∶ 𝜌 = 0, 𝐻𝑎 ∶ 𝜌 ≠ 0. A sample of 25
observations reveals that the correlation coefficient between two variables is 0.15. At a 5%
confidence level, can we reject the null hypothesis?

2. Install the ISLR2 package in R. Use the Hitters data set to look at the relationship between
Hits and Salary. Specifically, calculate the correlation coefficient and test the competing
hypothesis 𝐻𝑜 ∶ 𝜌 = 0, 𝐻𝑎 ∶ 𝜌 ≠ 0 at the 1% significance level.
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Exercise 2

1. Install the ISLR2 package in R. Use the Hitters data set to investigate if the average hits were
significantly different between the two divisions (American and National). Use the NewLeague
and Hits variables to test the hypothesis at the 5% significance level. Is there reason to believe
that the population variances are different?

2. Use the ISLR2 package for this question. Particularly, use the BrainCancer data set to
test whether males have a higher average survival time than women. Use the sex and time
variables to test the hypothesis at the 5% significance level. Is there reason to believe that
the population variances are different?

Exercise 3

1. Use the sleep data set included in R. At the 1% significance level, is there an effect of the
drug on the 10 patients? Assume that the group variable denotes before (1) the drug is
administered and after (2) the drug is administered.

Exercise 4

1. Install the ISLR2 package in R. Use the Hitters data set to investigate the effect of Hm-
Run,RBI, and Years on a players Salary. Which variables are statistically different from
zero? Are the variables jointly significant? Does the 𝑅2 suggest a good fit of the data to the
model?

2. José Altuve had 28 home runs, 57 RBI’s, and has been in the league for 12 years. What is
the model’s predicted salary for him? What is the 95% prediction interval? Note: The model
predicts his salary if he played in 1987.

14.3 Answers

Exercise 1

1. At the 5% significance level, we can not reject the null since the p-value is 0.47 > 0.05.

Recall that the t-stat is calculated by 𝑟𝑥𝑦
√

𝑛−2
√1−𝑟2𝑥𝑦

. We can use R as a calculator to calculate this

value:

1 rxy<-0.15
2 n<-25
3 (tstat<-(rxy*sqrt(n-2))/(sqrt(1-rxy^2)))

[1] 0.7276069
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Now, we can estimate the 𝑝-value using the pt() function:

1 2*pt(tstat,n-2,lower.tail = F)

[1] 0.4741966

2. The estimated correlation of 0.44 and the t-value is 7.89. Since the 𝑝-value is approximately
0 we reject the null hypothesis 𝐻𝑜 ∶ 𝜌 = 0.

Once the ISLR2 package is downloaded, it can be loaded to R using the library() function. The
cor.test() function conducts the appropriate test of significance.

1 library(ISLR2)
2 cor.test(Hitters$Salary,Hitters$Hits, conf.level = 0.95)

Pearson's product-moment correlation

data: Hitters$Salary and Hitters$Hits
t = 7.8863, df = 261, p-value = 8.531e-14
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3355210 0.5314332
sample estimates:

cor
0.4386747

Exercise 2

1. There is no reason to believe that the population variances are different. Players are recruited
from what seems to be a common pool. At a 5% significance level, the difference of the two
means is not significantly different from zero. We can’t reject the null hypothesis.

We will use the t.test() function in R to test the hypothesis. We note that the test is not paired,
two sided and of equal variances in the population.

1 t.test(Hitters$Hits[Hitters$NewLeague=="A"],
2 Hitters$Hits[Hitters$NewLeague=="N"],paired = F,
3 alternative = "two.sided",mu = 0,var.equal = T,
4 conf.level = 0.95 )

Two Sample t-test

data: Hitters$Hits[Hitters$NewLeague == "A"] and Hitters$Hits[Hitters$NewLeague == "N"]
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t = 1.0862, df = 320, p-value = 0.2782
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.581286 15.875028
sample estimates:
mean of x mean of y
103.58523 97.93836

2. There might be reason to believe that the population variances are different. Women and
men are known to have medical differences. At a 5% significance level, the average survival
time of men seems not to be larger than that of women. We can’t reject the null hypothesis
𝐻𝑜 ∶ ̄𝑥1 − ̄𝑥2 ≤ 0.

Once more use the t.test() function in R to test the hypothesis. Note that the test is not paired,
right-tailed and of different variances in the population.

1 t.test(BrainCancer$time[BrainCancer$sex=="Male"],
2 BrainCancer$time[BrainCancer$sex=="Female"],paired = F,
3 alternative = "greater",mu = 0, var.equal = F,
4 conf.level = 0.95 )

Welch Two Sample t-test

data: BrainCancer$time[BrainCancer$sex == "Male"] and BrainCancer$time[BrainCancer$sex == "Female"]
t = -0.30524, df = 84.867, p-value = 0.6195
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-8.504999 Inf
sample estimates:
mean of x mean of y
26.78302 28.10200

Exercise 3

1. There drug seems to have an effect as we can reject the null hypothesis 𝐻𝑜 ∶ ̄𝑑 = 0. The
difference of means seems to be statistically different from zero.

Use the t.test() function once more in R. Make sure to note that the test is paired, and two-
tailed.

1 t.test(sleep$extra[sleep$group==1],
2 sleep$extra[sleep$group==2], paired=T,
3 alternative = "two.sided", mu=0, conf.level = 0.99)
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Paired t-test

data: sleep$extra[sleep$group == 1] and sleep$extra[sleep$group == 2]
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true mean difference is not equal to 0
99 percent confidence interval:
-2.8440519 -0.3159481
sample estimates:
mean difference

-1.58

Exercise 4

1. Both RBI and Years are statistically significant and the salary of a player increases as they
gain more experience and have more RBI’s. Home runs do not seem to have an impact on
the salary of a player according to the data. The F-Statistics reveals that the coefficients are
jointly significant since the p-value is approximately zero. Both the Multiple and Adjusted
𝑅2 suggest that the model only accounts for 32% of the variation in Salary. We might have
to include more variable in our model to better explain the salary of a player.

We can run a linear regression in R by using the lm() function. We’ll use the summary() function
to get more details on the model’s performance.

1 fit<-lm(Salary~HmRun+RBI+Years,data=Hitters)
2 summary(fit)

Call:
lm(formula = Salary ~ HmRun + RBI + Years, data = Hitters)

Residuals:
Min 1Q Median 3Q Max

-752.31 -197.27 -66.80 97.73 2151.78

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -90.086 61.142 -1.473 0.142
HmRun -7.346 4.972 -1.478 0.141
RBI 9.156 1.685 5.432 1.28e-07 ***
Years 32.818 4.838 6.783 7.97e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 372.2 on 259 degrees of freedom
(59 observations deleted due to missingness)
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Multiple R-squared: 0.3269, Adjusted R-squared: 0.3191
F-statistic: 41.93 on 3 and 259 DF, p-value: < 2.2e-16

2. The predicted salary is 619.93 and the 95% prediction interval is [−129.89,1369.7].

1 new<-data.frame(HmRun=28,RBI=57,Years=12)
2 predict(fit,newdata=new,level=0.95,interval="prediction")

fit lwr upr
1 619.9268 -129.8905 1369.744
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